KVPY #8

Algebra Level 5

If 1 0 9 + 2 ( 1 1 1 ) ( 1 0 8 ) + 3 ( 1 1 2 ) ( 1 0 7 ) + + 10 ( 1 1 9 ) = 1 0 9 k 10^{9} + 2(11^1)(10^8) + 3(11^2)(10^7) + \cdots+ 10(11^9) = 10^9\cdot k , then find the value of k k .

For more KVPY practice questions, see my set


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 27, 2017

S = 1 0 9 + 2 ( 1 1 1 ) ( 1 0 8 ) + 3 ( 1 1 2 ) ( 1 0 7 ) + . . . + 9 ( 1 0 1 ) ( 1 1 8 ) + 10 ( 1 1 9 ) 11 S 10 = ( 1 1 1 ) ( 1 0 8 ) + 2 ( 1 1 2 ) ( 1 0 7 ) + 3 ( 1 1 3 ) ( 1 0 6 ) + . . . + 9 ( 1 1 9 ) + 1 1 10 S 11 S 10 = 1 0 9 + ( 1 1 1 ) ( 1 0 8 ) + ( 1 1 2 ) ( 1 0 7 ) + . . . + 1 1 9 1 1 10 11 10 ( S 11 S 10 ) = ( 1 1 1 ) ( 1 0 8 ) + ( 1 1 2 ) ( 1 0 7 ) + ( 1 1 3 ) ( 1 0 6 ) + . . . + 1 1 10 10 1 1 11 10 ( S 11 S 10 ) ( 1 11 10 ) = 1 0 9 1 1 10 1 1 10 10 + 1 1 11 10 S 100 = 1 0 9 1 1 10 + 1 1 10 ( 11 1 ) 10 = 1 0 9 S = 100 ( 1 0 9 ) \begin{aligned} S & = 10^9 + 2(11^1)(10^8) + 3(11^2)(10^7)+...+9(10^1)(11^8)+10(11^9) \\ \frac {11S}{10} & = (11^1)(10^8) + 2(11^2)(10^7) + 3(11^3)(10^6)+...+9(11^9)+11^{10} \\ S - \frac {11S}{10} & = 10^9 + (11^1)(10^8) + (11^2)(10^7)+...+11^9-11^{10} \\ \frac {11}{10}\left(S - \frac {11S}{10}\right) & = (11^1)(10^8) + (11^2)(10^7) + (11^3)(10^6)+...+\frac {11^{10}}{10}-\frac {11^{11}}{10} \\ \left(S - \frac {11S}{10}\right) \left(1-\frac {11}{10}\right) & = 10^9 - 11^{10} - \frac {11^{10}}{10} + \frac {11^{11}}{10}\\ \frac S{100} & = 10^9 - 11^{10} + \frac {11^{10}(11-1)}{10} \\ & = 10^9 \\ \implies S & = 100(10^9) \end{aligned}

k = 100 \implies k = \boxed{100}

Thank you sir for uploading such a nice solution...

Rahil Sehgal - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...