KVPY #9

Algebra Level 4

If a = r = 1 1 r 2 \displaystyle a = \sum_{r=1}^\infty \frac 1{r^2} and b = r = 1 1 ( 2 r 1 ) 2 \displaystyle b = \sum_{r=1}^\infty \frac 1{(2r-1)^2} , find 3 a b \dfrac {3a}b .

For more KVPY questions, try my set


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rahil Sehgal
Mar 27, 2017

This is the Basel problem

Vijay Simha - 4 years, 2 months ago
James Pohadi
Apr 1, 2017

b = r = 1 1 ( 2 r 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + . . . \displaystyle b = \sum_{r=1}^\infty \dfrac 1{(2r-1)^2} = \dfrac{1}{1^{2}} +\dfrac{1}{3^{2}}+ \dfrac{1}{5^{2}} + ...

a = r = 1 1 r 2 = 1 1 2 + 1 2 2 + 1 3 2 + . . . a = ( 1 1 2 + 1 3 2 + 1 5 2 + . . . ) + 1 4 ( 1 1 2 + 1 3 2 + 1 5 2 + . . . ) + 1 16 ( 1 1 2 + 1 3 2 + 1 5 2 + . . . ) + . . . a = b + 1 4 b + 1 16 b + . . . a = b 1 1 4 = b 3 4 3 a b = 4 \displaystyle a = \sum_{r=1}^\infty \dfrac 1{r^2} = \dfrac{1}{1^{2}} +\dfrac{1}{2^{2}}+ \dfrac{1}{3^{2}} + ... \\ \displaystyle a = (\dfrac{1}{1^{2}} +\dfrac{1}{3^{2}}+ \dfrac{1}{5^{2}} + ...) + \dfrac{1}{4} (\dfrac{1}{1^{2}} +\dfrac{1}{3^{2}}+ \dfrac{1}{5^{2}} + ...) + \dfrac{1}{16} (\dfrac{1}{1^{2}} +\dfrac{1}{3^{2}}+ \dfrac{1}{5^{2}} + ...)+... \\ a=b+\dfrac{1}{4}b+\dfrac{1}{16}b+... \\ a=\dfrac{b}{1-\dfrac{1}{4}}=\dfrac{b}{\dfrac{3}{4}} \\ \dfrac{3a}{b}=4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...