Not an olympiad question

Find the number of integral solutions of

35 x + 63 y + 45 z = 1 \large 35x + 63y + 45z = 1

for x < 9 \left| x \right| <9 , y < 5 \left| y \right| <5 , and z < 7 \left| z \right| <7 .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L e t ( 63 y 1 ) + 5 ( 7 x + 9 z ) = 0. We note that y has the smallest range. For -5<y<5, so 63y can contribute the following. ± { 63 , 126 , 189 , 252 } . ( 63 y 1 ) = { + 62 , + 125 , + 188 , + 251 , 63 , 126 , 190 , 153 } f o r y = 4 , 3 , . . . 3 , 4. But for (63-1) to be integer , it must be a multiple of 5. So +125 and -190 are only useful. T h a t m e a n s ( 7 x + 9 z ) m u s t b e = 125 5 o r 190 5 , t h a t i s 25 o r + 38. We get (7x+9z)= -25 with x=-1 and z=-2 . We get (7x+9z)= 38 with x=-1 and z=5 ...... and also with x=8 and z=-2 . Let \ (63y- 1)+5(7x+9z)=0.\\ \text{We note that y has the smallest range. For -5<y<5, so 63y can contribute the following.}\\ \pm\{63, 126, 189, 252\}.\\ \therefore\ (63y-1)=\{+62, +125, +188, +251,\ \ -63, -126, -190, -153\}\ for\ y=-4, -3, . . . 3, 4.\\ \text{But for (63-1) to be integer , it must be a multiple of 5. So +125 and -190 are only useful.}\\ That\ means\ (7x+9z)\ must\ be\ =\ \dfrac{-125}5 \ or\ \dfrac{190}5, \ that\ is\ -25\ or\ +38.\\ \text{We get (7x+9z)= -25 with x=-1 and z=-2}.\\ \text{We get (7x+9z)= 38 with x=-1 and z=5 ...... and also with x=8 and z=-2}.\\
So there are only three integer solutions.

Arkodipto Dutta
Sep 4, 2016

this question came in jmo 2016.

it came today in jmo i got 3 solutions. {x,y,z}= {-1,2,-2} and {8,-3,-2} and {-1,-3,5}

SOUVIK PAL - 4 years, 9 months ago

Can you write a solution that is helpful to those who cannot solve it? Else I'm inclined to delete this solution to encourage others to contribute a relevant answer.

Brilliant Mathematics Staff - 4 years, 9 months ago

I also got three solutions

Kushal Bose - 4 years, 9 months ago

35 x + 63 y + 45 z = 1 35x+63y+45z=1

5 ( 7 x + 9 z ) = 1 63 y 5(7x+9z)=1-63y

So, 5 divides 1 63 y 1 3 y 1-63y |1-3y

As 5 y 5 -5 \leq y\leq 5 only values of y=-3,2 satisfies

Case(1) take y=-3 and the equation becomes 7 x + 9 z = 38 7x+9z=38

7 ( x 5 ) = 3 ( 1 3 z ) 7(x-5)=3(1-3z) So 7 ( 1 3 z ) 7| (1-3 z) .

As z varies from (-7,7) .only values of z =-2,5 which gives two solution (8,-3,-2) and (-1,-3,5).

Case(2) take y=2 and the equation becomes : 7 x + 9 z = 25 7 x+9 z=-25

7 x + 9 z = 28 + 3 7 x+9 z=-28+3

7 ( x + 4 ) = 3 ( 1 3 z ) 7(x+4)=3(1-3 z)

Here same as before 7 1 3 z 7| 1-3 z so values of z=-2,5.

But putting values of z will give only one solution because other solution does not meet condition.

So the only solution is (-1,2,-2) . So overall there are three solutions in the given range.

Kushal Bose - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...