La La la

Algebra Level 3

{ ( x + y + z ) ( x + y ) = 30 ( x + y + z ) ( y + z ) = 18 ( x + y + z ) ( z + x ) = 2 \begin{cases} (x+y+z)(x+y)=30\\ (x+y+z)(y+z)=18\\ (x+y+z)(z+x)=2 \end{cases}

Given that x , y x, y and z z satisfy the system of equations above, find the sum of all values of z z .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Department 8
Aug 10, 2015

Let x + y + z = i x+y+z=i

Then ( x + y ) i = 30 ( y + z ) i = 18 ( z + x ) i = 2 (x+y)i=30 \\ (y+z)i=18 \\ (z+x)i=2

Adding them we get, 2 ( x + y + z ) i = 50 i 2 = 25 i = ± 5 2(x+y+z)i=50 \\ i^{2}=25 \\ i=\pm{5}

Keeping i i 's value in the first equation of x + y x+y , we get x + y = ± 6 x+y=\pm{6}

x + y + z = ± 5 x + y = ± 6 z = ± 5 ( ± 6 ) x+y+z=\pm{5} \\ x+y=\pm{6} \\ z=\pm{5}-(\pm{6})

We see z = ± 11 , ± 1 z=\pm{11},\pm{1} adding all we get answer to be 0 \boxed{0}

z = ± 11 z = \pm 11 doesn't give any solution.

Ivan Koswara - 5 years, 9 months ago

dont use i as variable.

Aareyan Manzoor - 5 years, 8 months ago

Tricky solution:

Note that if ( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) satisfy the system of equations, then so does ( x 0 , y 0 , z 0 ) (-x_0, -y_0, -z_0) .

So the sum of all possible values of z z must be 0 \boxed{0} .

Aareyan Manzoor
Oct 8, 2015

let x + y + z = a x+y+z=a then, { a ( a z ) = 30 a 2 a z = 30 a ( a x ) = 18 a 2 a x = 18 a ( a y ) = 2 a 2 a z = 2 \begin{cases} a(a-z)=30\rightarrow a^2-az=30\\ a(a-x)=18\rightarrow a^2-ax=18\\ a(a-y)=2\rightarrow a^2-az=2 \end{cases} adding them: 3 a 2 a ( x + y + z ) = 3 a 2 a a = 2 a 2 = 50 3a^2-a(x+y+z)=3a^2-a*a=2a^2=50 a = ± 5 a=\pm 5 insert this into 1st equation: ( ± 5 ) 2 ± 5 z = 30 (\pm 5)^2-\pm 5z=30 ± 5 z = 5 z = ± 1 \pm 5z=-5\rightarrow z=-\pm 1 1 + 1 = 0 1+-1=\boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...