Lagrange 102

A bead of mass m m slides without losses along a wire in the shape of the curve y = x 2 y = x^2 . The gravitational acceleration g g is in the negative y y direction. Gravitational potential energy is measured with respect to y = 0 y = 0 .

What is the Lagrangian for the particle's motion?

Note: In the equations on the right, x x represents the particle's horizontal position

1 2 m x ˙ 2 m g x \large{\frac{1}{2} m \dot{x}^2 - m g x } 1 2 m x ˙ 2 m g x 2 \large{\frac{1}{2} m \dot{x}^2 - m g x^2 } 1 2 m ( 1 + 4 x 2 ) x ˙ 2 m g x 2 \large{\frac{1}{2} m (1 + 4 x^2) \, \dot{x}^2 - m g x^2} 1 2 m ( 1 + 4 x 2 ) x ˙ 2 m g x \large{\frac{1}{2} m (1 + 4 x^2) \, \dot{x}^2 - m g x }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Chase
Jul 14, 2018

Coordinates and velocity:

x = x y = x 2 x ˙ = x ˙ y ˙ = 2 x x ˙ \large{x = x \\ y = x^2 \\ \dot{x} = \dot{x} \\ \dot{y} = 2 x \dot{x}}

Kinetic Energy:

v 2 = x ˙ 2 + y ˙ 2 = ( 1 + 4 x 2 ) x ˙ 2 E = 1 2 m v 2 = 1 2 m ( 1 + 4 x 2 ) x ˙ 2 \large{v^2 = \dot{x}^2 + \dot{y}^2 = (1 + 4 x^2) \dot{x}^2 \\ E = \frac{1}{2} m v^2 = \frac{1}{2} m (1 + 4 x^2) \dot{x}^2 }

Potential Energy:

U = m g y = m g x 2 \large{U = m g y = m g x^2 }

Lagrangian:

L = E U = 1 2 m ( 1 + 4 x 2 ) x ˙ 2 m g x 2 \large{L = E - U = \frac{1}{2} m (1 + 4 x^2) \dot{x}^2 - m g x^2 }

We have y = x 2 y = x^{2} y ˙ = 2 x x ˙ \dot{y} = 2x\dot{x} and v = x ˙ i ^ + y ˙ j ^ v = \dot{x}\hat{i} + \dot{y}\hat{j} v = x ˙ i ^ + 2 x x ˙ j ^ v = \dot{x}\hat{i} + 2x\dot{x}\hat{j} and height from reference level = y y

L = T - U

1 2 m v 2 m g h \frac{1}{2}mv^{2} - mgh 1 2 m ( x ˙ 2 + 4 x 2 x ˙ 2 ) m g y \frac{1}{2}m(\dot{x}^{2} +4x^{2}\dot{x}^{2}) - mgy 1 2 m ( 1 + 4 x 2 ) x ˙ 2 m g x 2 \frac{1}{2}m(1 +4x^{2})\dot{x}^{2} - mgx^{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...