"L'alphabet du millénaire"

Algebra Level 2

A = 2000 B = A 999 C = A + B 998 D = A + B + C 997 Z = A + B + C + . . . + Y 975 \begin{aligned} A&=&2000\\ \\ B&=&A-999\\ \\ C&=&A+B-998\\ \\ D&=&A+B+C-997\\ & \vdots & \\ Z&=&A+B+C+...+Y-975 \end{aligned}

How much is Z + 1 2 25 ? \frac { Z+1 }{ { 2 }^{ 25 } } ?


The answer is 501.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Antony Diaz
Apr 24, 2014

F i r s t , I g o t t h a t B = 1001. A n d w e c a n s e e t h a t C = 2 B + 1 2 B + ( 2 1 ) D = 2 C + 1 = 4 B + 3 2 2 B + ( 2 2 1 ) E = 2 D + 1 = 8 B + 7 2 3 B + ( 2 3 1 ) F = 2 E + 1 = 16 B + 15 2 4 B + ( 2 4 1 ) . . . Z = 2 Y + 1 2 24 B + ( 2 24 1 ) N o w , Z + 1 2 25 = [ 2 24 ( B + 1 ) 1 ] + 1 2 25 = B + 1 2 = 501. First,\quad I\quad got\quad that\quad B=1001.\quad And\quad we\quad can\quad see\quad that\quad \\ \\ C=2B+1\Rightarrow 2B+(2-1)\\ \\ D=2C+1=4B+3\Rightarrow { 2 }^{ 2 }B+({ 2 }^{ 2 }-1)\\ \\ E=2D+1=8B+7\Rightarrow { 2 }^{ 3 }B+({ 2 }^{ 3 }-1)\\ \\ F=2E+1=16B+15{ \Rightarrow 2 }^{ 4 }B+({ 2 }^{ 4 }-1)\\ .\\ .\\ .\\ Z=2Y+1\quad \Rightarrow \quad { 2 }^{ 24 }B+({ 2 }^{ 24 }-1)\\ \\ Now,\quad \frac { Z+1 }{ { 2 }^{ 25 } } =\frac { \left[ { 2 }^{ 24 }(B+1)-1 \right] +1 }{ { 2 }^{ 25 } } =\frac { B+1 }{ 2 } =501.

Note, use \ ( \ ) only for math equations / statement. For 'normal' words, there is no need to use them. I've edited your question for your reference.

Calvin Lin Staff - 7 years, 1 month ago

Log in to reply

Thanks!

Antony Diaz - 7 years, 1 month ago
Otto Bretscher
Apr 30, 2015

I'm setting B = x 0 = 1001 , C = x 1 = 2003 , . . . , Z = x 24 B=x_0=1001, C=x_1=2003,... ,Z=x_{24} . We have the recursive formula x n = 2 x n 1 + 1 x_{n}=2x_{n-1}+1 , or, x n + 1 = 2 ( x n 1 + 1 ) x_{n}+1=2(x_{n-1}+1) , so that x n + 1 = 2 n ( x 0 + 1 ) = 1002 ( 2 n ) x_{n}+1=2^n(x_0+1)=1002(2^n) . Thus z + 1 2 25 = x 24 + 1 2 25 = 1002 ( 2 24 ) 2 25 = 501 \frac{z+1}{2^{25}}=\frac{x_{24}+1}{2^{25}}=\frac{1002(2^{24})}{2^{25}}=\boxed{501}

How you know that 2(xsubn-1+1) is equal to 2n(xsub0+1)?

Sergio Alejandro Acelas Avila - 6 years, 1 month ago

Log in to reply

I'm applying the formula x n + 1 = 2 ( x n 1 + 1 ) x_{n}+1=2(x_{n-1}+1) over and over again: x n + 1 = 2 ( x n 1 + 1 ) = 4 ( x n 2 + 1 ) + . . . x_{n}+1=2(x_{n-1}+1)=4(x_{n-2}+1)+... More formally, I'm using induction.

Otto Bretscher - 6 years, 1 month ago
Pop Wong
May 4, 2020

Noted Z + 1 2 25 \frac{Z+1}{2^{25}} = 2 Y + 1 + 1 2 25 \frac{{2Y+1}+1}{2^{25}} = Y + 1 2 24 \frac{Y+1}{2^{24}}

so Z + 1 2 25 \frac{Z+1}{2^{25}} = Y + 1 2 24 \frac{Y+1}{2^{24}} = X + 1 2 23 \frac{X+1}{2^{23}} = .... = C + 1 2 2 \frac{C+1}{2^{2}} = B + 1 2 1 \frac{B+1}{2^{1}} = A 999 + 1 2 \frac{A-999+1}{2} = 501

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...