Given that x , y and z are positive numbers satisfying x + y + z = 1 , find the minimum of x y z ( x + y ) ( x + z ) ( y + z ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
But if x=-y and z=1 ,then we will get 0
If there is no restriction x + y + z = 1 even then the answer would be the same. Hence I feel that this restriction is superfluous.
Call the expression A. By AM-GM we get x + y ≥ 2 x y , y + z ≥ 2 y z , x + z ≥ 2 x z . So A ≥ x y z 8 x y z = 8 The equality holds at x = y = z = 3 1
Problem Loading...
Note Loading...
Set Loading...
Q = x y z ( x + y ) ( y + z ) ( z + x ) = x y z ( 1 − z ) ( 1 − x ) ( 1 − y ) = x y z 1 − ( x + y + z ) + x y + y z + z x − x y z = x y z 1 − 1 + x y + y z + z x − x y z = x 1 + y 1 + z 1 − 1 ≥ x + y + z 9 − 1 = 8 Note that x + y + z = 1 By AM-HM inequality (see Note)
Note: AM-HM inequality states that
3 x + y + z ≥ x 1 + y 1 + z 1 3 ⟹ x + y + z 9 ≤ x 1 + y 1 + z 1