An algebra problem by Rui-Xian Siew

Algebra Level 3

Given that x , y x,y and z z are positive numbers satisfying x + y + z = 1 x+y+z=1 , find the minimum of ( x + y ) ( x + z ) ( y + z ) x y z \dfrac { (x+y)(x+z)(y+z) }{ xyz } .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 24, 2016

Q = ( x + y ) ( y + z ) ( z + x ) x y z = ( 1 z ) ( 1 x ) ( 1 y ) x y z Note that x + y + z = 1 = 1 ( x + y + z ) + x y + y z + z x x y z x y z = 1 1 + x y + y z + z x x y z x y z = 1 x + 1 y + 1 z 1 By AM-HM inequality (see Note) 9 x + y + z 1 = 8 \begin{aligned} Q & = \frac {(\color{#3D99F6}{x+y})(y+z)(z+x)}{xyz} \\ & = \frac {(\color{#3D99F6}{1-z})(1-x)(1-y)}{xyz} & \small \color{#3D99F6}{\text{Note that }x+y+z =1} \\ & = \frac {1-(\color{#3D99F6}{x+y+z})+xy+yz+zx-xyz}{xyz} \\ & = \frac {1-\color{#3D99F6}{1}+xy+yz+zx-xyz}{xyz} \\ & = \color{#3D99F6}{\frac 1x + \frac 1y + \frac 1z} - 1 & \small \color{#3D99F6}{\text{By AM-HM inequality (see Note)}} \\ & \ge \color{#3D99F6}{\frac 9{x+y+z}} - 1 = \boxed{8} \end{aligned}


Note: AM-HM inequality states that

x + y + z 3 3 1 x + 1 y + 1 z 9 x + y + z 1 x + 1 y + 1 z \begin{aligned} \frac {x+y+z}3 \ge \frac 3{\frac 1x + \frac 1y + \frac 1z} \\ \implies \frac 9{x+y+z} \le \frac 1x + \frac 1y + \frac 1z \end{aligned}

But if x=-y and z=1 ,then we will get 0

genis dude - 4 years, 9 months ago

Log in to reply

But x , y , z > 0 x, y, z > 0 .

Chew-Seong Cheong - 4 years, 9 months ago

If there is no restriction x + y + z = 1 x + y + z = 1 even then the answer would be the same. Hence I feel that this restriction is superfluous.

Rajen Kapur - 4 years, 9 months ago

Log in to reply

Yes, you are right.

Chew-Seong Cheong - 4 years, 9 months ago
P C
Sep 1, 2016

Call the expression A. By AM-GM we get x + y 2 x y x+y\geq 2\sqrt{xy} , y + z 2 y z y+z\geq 2\sqrt{yz} , x + z 2 x z x+z\geq 2\sqrt{xz} . So A 8 x y z x y z = 8 A\geq\frac{8xyz}{xyz}=8 The equality holds at x = y = z = 1 3 x=y=z=\frac{1}{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...