Land Of Summations

Calculus Level 4

Evaluate

lim n k = 1 n ( 1 + k n 2 1 ) \large\ \displaystyle \lim _{ n\rightarrow \infty }{ \sum _{ k=1 }^{ n }{ \left( \sqrt { 1 + \frac { k }{ { n }^{ 2 } } } - 1 \right) } }


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 21, 2018

By successive applications of the Generalized Mean Value Theorem, we see that, for any 0 < x 1 0 < x \le 1 , we can find 0 < z < y < x 0 < z < y < x such that 1 + x 1 1 2 x x 2 = 1 2 1 + y 1 2 2 y = ( 1 + y ) 1 2 1 4 y = 1 2 ( 1 + z ) 3 2 4 = 1 8 ( 1 + z ) 3 2 \frac{\sqrt{1+x} - 1 - \frac12x}{x^2} \; = \; \frac{\frac{1}{2\sqrt{1+y}} - \frac12}{2y} \; = \; \frac{(1+y)^{-\frac12} - 1}{4y} \; = \; \frac{-\frac12(1+z)^{-\frac32}}{4} \; = \; -\frac{1}{8(1+z)^{\frac32}} and hence we deduce that 1 8 x 2 1 + x 1 1 2 x 0 0 x 1 -\tfrac18x^2 \; \le \; \sqrt{1+x} - 1 - \tfrac12x \; \le \; 0 \hspace{2cm} 0 \le x \le 1 Thus k 2 n 2 k 2 8 n 4 1 + k n 2 1 k 2 n 2 \frac{k}{2n^2} - \frac{k^2}{8n^4} \; \le \; \sqrt{1 + \tfrac{k}{n^2}} - 1 \; \le \; \frac{k}{2n^2} for any 1 k n 1 \le k \le n , and hence n + 1 4 n ( n + 1 ) ( 2 n + 1 ) 48 n 3 = n ( n + 1 ) 4 n 2 k = 1 n ( 1 + k n 2 1 ) n ( n + 1 ) 4 n 2 = n + 1 4 n \frac{n+1}{4n} - \frac{(n+1)(2n+1)}{48n^3} \; = \; \frac{n(n+1)}{4n^2} \; \le \; \sum_{k=1}^n \left(\sqrt{1 + \tfrac{k}{n^2}} - 1 \right) \; \le \; \frac{n(n+1)}{4n^2} \; = \; \frac{n+1}{4n} for all n n , and hence lim n k = 1 n ( 1 + k n 2 1 ) = 1 4 \lim_{n \to \infty} \sum_{k=1}^n \left(\sqrt{1 + \tfrac{k}{n^2}} - 1 \right) \; = \; \boxed{\tfrac14}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...