Laplace transform general form

Calculus Level 3

For a second order linear ODE of the form a y + b y + c y = f ( t ) ay''+by'+cy=f(t) , where a , b , c a,b,c are constants, which of these is the correct expression for L [ y ] = Y ( s ) \mathcal{L}[y]=Y(s) ?

L [ f ( t ) ] ( a s + b ) y ( 0 ) a y ( 0 ) a s 2 + b s + c \frac{L[f(t)]-(as+b)y(0)-ay'(0)}{as^2+bs+c} ( a s + b ) y ( 0 ) + a y ( 0 ) a 2 s + b s + c \frac{(as+b)y(0)+ay'(0)}{a^2s+bs+c} L [ f ( t ) ] + ( a s + b ) y ( 0 ) + a y ( 0 ) a 2 s + b s + c \frac{L[f(t)]+(as+b)y(0)+ay'(0)}{a^2s+bs+c} L [ f ( t ) ] + ( a s + b ) y ( 0 ) + a y ( 0 ) a s 2 + b s + c \frac{L[f(t)]+(as+b)y(0)+ay'(0)}{as^2+bs+c}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Mar 19, 2020

Consider the differential equation:

a y ¨ + b y ˙ + c y = f ( t ) a \ddot{y} + b \dot{y} +cy = f(t)

Taking Laplace transform on both sides gives:

a ( s 2 Y ( s ) s y ( 0 ) y ˙ ( 0 ) ) + b ( s Y ( s ) y ( 0 ) ) + c Y ( s ) = L [ f ( t ) ] a \left(s^2 Y(s) -s y(0) -\dot{y}(0)\right) + b \left(sY(s) - y(0)\right) + cY(s) = \mathscr{L}\left[f(t)\right]

Where: Y ( s ) = L [ y ( t ) ] Y(s) = \mathscr{L}\left[y(t)\right]

Re-arranging gives:

Y ( s ) = L [ f ( t ) ] + ( a s + b ) y ( 0 ) + a y ˙ ( 0 ) a s 2 + b s + c Y(s) = \frac{\mathscr{L}\left[f(t)\right] + \left(as+b\right)y(0) + a\dot{y}(0)}{as^2+bs+c}

Use '\mathcal{L}' or '\mathscr{L}' to get the curvy L symbol. The two are slightly different but for me, either symbol looks okay.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...