Large Logs

Algebra Level 5

If x x is the number of terminating zeroes of 100 1000 10000 { 100 }^{ { 1000 }^{ 10000 } } and y y is the number of terminating zeroes of 1000 10000 100000 { 1000 }^{ { 10000 }^{ 100000 } } , compute log x y \left\lfloor \log _{ x }{ y } \right\rfloor .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 16, 2015

The number of trialing zeroes are given by:

x = log ( 10 0 100 0 10000 ) = log ( 1 0 2 × 1 0 3 × 10000 ) = 2 × 1 0 30000 y = log ( 100 0 1000 0 100000 ) = log ( 1 0 3 × 1 0 4 × 100000 ) = 3 × 1 0 400000 \begin{aligned} x & = \left \lfloor \log{\left( 100^{1000^{10000}}\right)} \right \rfloor = \left \lfloor \log{\left( 10^{2\times 10^{3\times 10000}}\right)} \right \rfloor = 2 \times 10^{30000} \\ y & = \left \lfloor \log{\left( 1000^{10000^{100000}}\right)} \right \rfloor = \left \lfloor \log{\left( 10^{3\times 10^{4\times 100000}}\right)} \right \rfloor = 3 \times 10^{400000} \end{aligned}

Now, we have:

log x y = log y log x = log ( 3 × 1 0 400000 ) log ( 2 × 1 0 30000 ) = log 3 + 400000 log 2 + 30000 = 400000 30000 = 40 3 = 13 \begin{aligned} \left \lfloor \log_x{y} \right \rfloor & = \left \lfloor \dfrac {\log{y}} {\log{x}} \right \rfloor = \left \lfloor \dfrac {\log{\left(3 \times 10^{400000}\right)}} {\log{\left(2 \times 10^{30000}\right)}} \right \rfloor = \left \lfloor \dfrac {\log{3} + 400000} {\log{2} + 30000} \right \rfloor \\ & = \left \lfloor \dfrac {400000} {30000} \right \rfloor = \left \lfloor \dfrac {40} {3} \right \rfloor = \boxed{13} \end{aligned}

same here......

Aakash Khandelwal - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...