Clean Minima

Algebra Level 4

Let α \large \alpha and β \large\beta be the roots of x 2 4 ( k 2 7 k + 8 ) x 7 x^{2}-4(k^{2}-7k+8)x-7 .

If V n = α n β n \large V_{n}=\alpha^{n}-\beta^{n} for n 1 n\geq1 .

Then Find the minimum possible value of

V 101 7 V 99 V 100 \large\dfrac{V_{101}-7V_{99}}{V_{100}}


The answer is -17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

α + β = 4 ( k 2 7 k + 8 ) α β = 7 V 101 7 V 99 V 100 V 101 + ( α β ) V 99 V 100 α 101 β 101 + α 100 β α β 100 α 100 β 100 α 101 + α 100 β ( β 101 + α β 100 ) α 100 β 100 α 100 ( α + β ) β 100 ( α + β ) α 100 β 100 ( α 100 β 100 ) ( α + β ) α 100 β 100 α + β = 4 ( k 2 7 k + 8 ) \begin{aligned} & \alpha +\beta =4({{k}^{2}}-7k+8) \\ & \alpha \beta =-7 \\ & \frac{{{V}_{101}}-7{{V}_{99}}}{{{V}_{100}}} \\ & \frac{{{V}_{101}}+(\alpha \beta ){{V}_{99}}}{{{V}_{100}}} \\ & \frac{{{\alpha }^{101}}-{{\beta }^{101}}+{{\alpha }^{100}}\beta -\alpha {{\beta }^{100}}}{{{\alpha }^{100}}-{{\beta }^{100}}} \\ & \frac{{{\alpha }^{101}}+{{\alpha }^{100}}\beta -({{\beta }^{101}}+\alpha {{\beta }^{100}})}{{{\alpha }^{100}}-{{\beta }^{100}}} \\ & \frac{{{\alpha }^{100}}(\alpha +\beta )-{{\beta }^{100}}(\alpha +\beta )}{{{\alpha }^{100}}-{{\beta }^{100}}} \\ & \frac{({{\alpha }^{100}}-{{\beta }^{100}})(\alpha +\beta )}{{{\alpha }^{100}}-{{\beta }^{100}}} \\ & \alpha +\beta =4({{k}^{2}}-7k+8) \\ \end{aligned} The Minimum Value of 4 ( k 2 7 k + 8 ) 4({{k}^{2}}-7k+8) is -17 So, the solution is -17

Did the same waayy! :)

Rahul Chandani - 6 years, 3 months ago
Pi Han Goh
Feb 3, 2015

Let M M denote the expression V 101 7 V 99 V 100 \large \frac {V_{101} - 7V_{99} }{V_{100}} , rearranging gives

V 101 M V 100 7 V 99 = 0 V_{101} - M \cdot V_{100} - 7 V_{99} = 0

By Newton's sum, comparing it to the quadratic equation given:

M = 4 ( k 2 7 k + 8 ) M = 4(k^2 - 7k + 8)

The minimum value of M M occur when d M d k = 0 \frac {\mathrm d M}{\mathrm d k} = 0 , which means 4 ( 2 k 7 ) = 0 k = 7 2 4(2k-7) = 0 \Rightarrow k = \frac {7}{2} , substitute this value into M M yields 17 \boxed{-17}

Nikhil Jaiswal
May 5, 2015

similar type was asked in jee mains 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...