Evaluate
1 2 3 2 − 1 2 3 × 4 5 6 + 4 5 6 2 1 2 3 3 + 4 5 6 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nicely solved !
Nice
Very Nice..!!
brilliant attack
nice boss very well
very well done
nice one!
nice
good!!!
This question can be solved by using an algebraic identity i.e. a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) Let a = 1 2 3 and b = 4 5 6 Now, let's solve the equation, a 2 − a b + b 2 a 3 + b 3 = a 2 − a b + b 2 ( a + b ) ( a 2 − a b + b 2 ) = a + b Substituting the values of a and b , we get, a + b = 1 2 3 + 4 5 6 = 5 7 9
123^3 + 456^3 = (123 + 456)(123^2−123×456+456^2) <=> The result is 123 + 456 = 579
Using formulae a3+b3/(a2-a.b+b2)
apply the factorization in the numerator
No ! ! It's much simpler Remember this identity ........ :- a^{3} + b^{3} = (a+b) (a^{2} + b^{2} - ab)
by this
we get :- (123 + 456 ) ( 123^{2} - 123 x 456 + 456^{2} )
/
( 123^{2} - 123 x 456 + 456^{2} )
therefore we get , 123 + 456 = 579
Could you write how you did it.
Take a look this simple trick: ( x 3 + y 3 ) = ( x + y ) ( x 2 − x y + y 2 ) , then x 2 − x y + y 2 x 3 + y 3 = x + y . Now, let x = 1 2 3 and y = 4 5 6 . Therefore 1 2 3 2 − ( 1 2 3 ) ( 4 5 6 ) + 4 5 6 2 1 2 3 3 + 4 5 6 3 = 1 2 3 + 4 5 6 = 5 7 9 # Q . E . D . #
We can solve this question using algebraic identity:
( a 3 + b 3 ) = ( a + b ) ( a 2 − a b + b 2 )
Let a = 1 2 3 and b = 4 5 6 . So,
( a 2 − a b + b 2 ) ( a 3 + b 3 ) = ( 1 2 3 2 − 1 2 3 × 4 5 6 + 4 5 6 2 ) ( 1 2 3 3 + 4 5 6 3 )
= ( 1 2 3 2 − 1 2 3 × 4 5 6 + 4 5 6 2 ) ( 1 2 3 + 4 5 6 ) ( 1 2 3 2 − 1 2 3 × 4 5 6 + 4 5 6 2 )
= 1 2 3 + 4 5 6 = 5 7 9
Thus, the answer is 5 7 9
123^3+456^3/123^2-123 456+456^2=(123+456)(123^2+456^2-123 456)/(123^2+456^2-123*456)=123+456=579
The first step is you know that all of them is seem likely and you must simplify it
First
[[\frac{ ( 1 2 3 + 4 5 6 ) 3 -3 × 123 × 456(123+456)}{ ( 1 2 3 + 4 5 6 ) 2 - 3 × 123 × 456 ]]
Second pull out the (123+456)
[[\frac{(123+456) ( 1 2 3 + 4 5 6 ) 2 - 3 × 123 × 456}{ ( 1 2 3 + 4 5 6 ) 2 - 3 × 123 × 456}]]
Then you can remove it and this the answer
1 2 3 + 4 5 6 = 5 7 9
123+456=579 { use (x^3+y^3)/x^2-xy+y^2) = x+y
Use the identity 123^3 + 456^3 =(123+456) (123^2-123*456 +456^2) So you are left with 123+456 in the numerator which equals 579.
=(123+456)(123^2-123 456+456^2)/(123^2-123 456+456^2) =123+456 =579
BREAK THE ABOVE QUBE LAW & AVOID THE SAME THING.THEN ANS IS:123+456=579
(a^{3}+b^{3})=(a+b)(a^{2}-ab+b^{2}) is one of the formaulas
i.e.
( a^{3}+b^{3} ) / ((a^{2}-ab+b^{2}) = (a+b)
when you put a=123 and b=456 you get the above expression which is equivalent to a+b i.e 123+456 i.e. 579
123^{3}+456^{3}/123^{2}-123 456+456^{2} =(123+456)(123^{2}-123 456+456^{2})/(123^{2}-123*456+456^{2}) =123+456 =579
The formula for a 3 + b 3 is ( a + b ) ( a 2 − a b + b 2
Apply the same in the numerator,
( 1 2 3 2 − 1 2 3 × 4 5 6 + 4 5 6 2 ) ( 1 2 3 + 4 5 6 ) ( 1 2 3 2 − 1 2 3 × 4 5 6 + 4 5 6 2 )
= 1 2 3 + 4 5 6
= 5 7 9
That's the answer!
Problem Loading...
Note Loading...
Set Loading...
Just split the numerator using the identity ( a 3 + b 3 ) = ( a + b ) ( a 2 − a b + b 2 )
= ( 1 2 3 2 − 1 2 3 × 4 5 6 + 4 5 6 2 ) ( 1 2 3 3 + 4 5 6 3 )
= ( 1 2 3 2 − 1 2 3 × 4 5 6 + 4 5 6 2 ) ( 1 2 3 + 4 5 6 ) ( 1 2 3 2 − 1 2 3 × 4 5 6 + 4 5 6 2 )
= ( 1 2 3 + 4 5 6 ) = 5 7 9