Large powers can produce small results

Algebra Level 4

If the roots of 8 x 2 10 x + 3 = 0 8x^2-10x+3=0 are α \alpha and β 2 \beta^2 where β 2 > 1 2 \beta^2>\frac{1}{2} , then find the equation whose roots are ( α + i β ) 100 (\alpha+i\beta)^{100} and ( α i β ) 100 (\alpha-i\beta)^{100} .

None of the given choices. x 2 + x 1 = 0 x^2+x-1=0 x 2 x + 1 = 0 x^2-x+1=0 x 2 x 1 = 0 x^2-x-1=0 x 2 + x + 1 = 0 x^2+x+1=0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

8 x 2 10 x + 3 = 0 ( 2 x 1 ) ( 4 x 3 ) = 0 α = 1 2 β 2 = 3 4 β = 3 2 8x^2-10x+3 =0 \quad \Rightarrow (2x-1)(4x-3) = 0 \\ \Rightarrow \alpha = \frac{1}{2} \quad \quad \beta^2 = \frac{3}{4} \quad \Rightarrow \beta = \frac{\sqrt{3}}{2}

We note that:

( α + i β ) 100 = ( 1 2 + i 3 2 ) 100 = ( e i π 3 ) 100 = e i 100 π 3 = 1 2 i 3 2 ( α i β ) 100 = e i 100 π 3 = 1 2 + i 3 2 (\alpha + i\beta)^{100} = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{100} = \left( e^{i\frac{\pi}{3}}\right)^{100} = e^{i\frac{100\pi}{3}} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \\ (\alpha - i\beta)^{100} = e^{-i\frac{100\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}

The equation, whose roots are ( α + i β ) 100 (\alpha + i\beta)^{100} and ( α i β ) 100 (\alpha - i \beta ) ^{100} is:

x 2 ( ( α + i β ) 100 + ( α i β ) 100 ) x + ( α + i β ) 100 ( α i β ) 100 = 0 x 2 ( 1 2 i 3 2 1 2 + i 3 2 ) x + ( 1 2 i 3 2 ) ( 1 2 + i 3 2 ) = 0 x 2 + x + 1 = 0 x^2 - \left((\alpha + i\beta)^{100} + (\alpha - i\beta)^{100} \right) x + (\alpha + i\beta)^{100}(\alpha - i\beta)^{100} = 0 \\ x^2 - \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2} -\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) x + \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) \left( -\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) = 0 \\ \Rightarrow \boxed {x^2+x+1=0}

A typo. First line second term. ( α + i β ) 100 = ( 1 2 + i 3 2 ) 100 = ( e i π 3 ) 100 (\alpha + i\beta)^{100} = \left( \dfrac{1}{2} + i\dfrac{\sqrt{3}}{2}\right)\color{#D61F06}{\large ^{100}} = \left( e^{i\frac{\pi}{3}} \right)^{100}
Beautiful solution.

Niranjan Khanderia - 5 years, 12 months ago

Log in to reply

Thanks a lot for the errata and comments.

Chew-Seong Cheong - 5 years, 12 months ago

8 x 2 10 x + 3 = 0 α = 1 2 , β = 3 2 8x^2-10x+3=0\Rightarrow \alpha =\frac{1}{2},\beta=\frac{\sqrt{3}}{2} ( α + i β ) 100 = ( 1 2 + 3 2 i ) 100 = ( cos ( 6 0 ) + sin ( 6 0 ) ) 100 = cos ( 600 0 ) + sin ( 600 0 ) i [By De Moivre’s formula] = 1 2 3 2 i \left(\alpha+i\beta\right)^{100}=\left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^{100}\\=\left(\cos(60^\circ)+\sin(60^\circ)\right)^{100}=\cos(6000^\circ)+\sin(6000^\circ)i\mbox{[By De Moivre's formula]}\\=-\frac{1}{2}-\frac{\sqrt{3}}{2}i

Similarly, we obtain

( α i β ) 100 = ( 1 2 3 2 i ) 100 = ( cos ( 30 0 ) + sin ( 30 0 ) ) 100 = cos ( 3000 0 ) + sin ( 3000 0 ) i [By De Moivre’s formula] = 1 2 + 3 2 i \left(\alpha-i\beta\right)^{100}=\left(\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)^{100}\\=\left(\cos(300^\circ)+\sin(300^\circ)\right)^{100}=\cos(30000^\circ)+\sin(30000^\circ)i\mbox{[By De Moivre's formula]}\\=-\frac{1}{2}+\frac{\sqrt{3}}{2}i

Let the final equation be of the form x 2 + b x + c x^2+bx+c . By Vieta's theorem, we have

b = ( ( α i β ) 100 + ( α + i β ) 100 ) = ( 1 2 1 2 ) = 1 b=-(\left(\alpha-i\beta\right)^{100}+\left(\alpha+i\beta\right)^{100})=-\left(-\frac{1}{2}-\frac{1}{2}\right)=1

Similarly we have

c = ( ( α i β ) 100 ( α + i β ) 100 ) = ( 1 2 3 2 i ) ( 1 2 + 3 2 i ) = 1 4 + 3 4 = 1 c=(\left(\alpha-i\beta\right)^{100}\left(\alpha+i\beta\right)^{100})=\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)=\frac{1}{4}+\frac{3}{4}=1

We thus arrive at x 2 + x + 1 = 0 x^2+x+1=0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...