Larger Squares

Algebra Level 2

Which sum is larger?

1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 1 0 2 1 1 2 1 2 2 1 3 2 1 4 2 1 5 2 1 6 2 \color{#3D99F6}{1^2\;2^2\;3^2\;4^2}\; |\;\color{#D61F06}{5^2\; 6^2\; 7^2\; 8^2}\; | \;\color{#D61F06}{9^2\; 10^2\; 11^2\; 12^2} |\; \color{#3D99F6}{13^2\;14^2\;15^2\;16^2}

The sum of the blue \color{#3D99F6}{\text{blue}} terms The sum of the red \color{#D61F06}{\text{red}} terms

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Oct 22, 2017

Method 1:

Let A = 1 2 + 2 2 + 3 2 + 4 2 , B 2 = 5 2 + 6 2 + 7 2 + 8 2 , C = 9 2 + 1 0 2 + 1 1 2 + 1 2 2 , D = 1 3 2 + 1 4 2 + 1 5 2 + 1 6 2 A = 1^2 + 2^2 + 3^2 + 4^2, B^2= 5^2 + 6^2 + 7^2 + 8^2 , C = 9^2 + 10^2 + 11^2 + 12^2, D = 13^2 + 14^2 + 15^2 + 16^2 .

Essentially we want to prove that D + A > B + C D+A >B+C , which is equivalent to D C > B A D-C > B-A .

Recall the difference of 2 squares identity , a 2 b 2 = ( a + b ) ( a b ) a^2 - b^2 = (a+b)(a-b) .

So D C = ( 1 3 2 9 2 ) + ( 1 4 2 1 0 2 ) + ( 1 5 2 1 1 2 ) + ( 1 6 2 1 2 2 ) = ( 13 9 ) ( 13 + 9 ) + ( 14 10 ) ( 14 + 10 ) + ( 15 11 ) ( 15 + 11 ) + ( 16 12 ) ( 16 + 12 ) = 4 ( 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 ) . \begin{aligned}D - C &= &(13^2 - 9^2) + (14^2 - 10^2) + (15^2 - 11^2) + (16^2 - 12^2) \\ &=& (13-9)(13+9) + (14-10)(14+10) + (15-11)(15+11) + (16-12)(16+12) \\ &=& 4(9+10+11+12+13+14+15+16) . \end{aligned}

Likewise, we should get B A = 4 ( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 ) B-A = 4(1+2+3+4+5+6+7+8) .

Since it is obvious that 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 > 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 9+10+11+12+13+14+15+16 > 1+2+3+4+5+6+7+8 , then D C > B A D-C > B-A , and we're done.


Method 2 : Let f ( x ) = x 2 + ( 17 x ) 2 f(x) = x^2 + (17-x)^2 . We want to prove that f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 4 ) > f ( 5 ) + f ( 6 ) + f ( 7 ) + f ( 8 ) f(1) + f(2) + f(3) + f(4) > f(5) + f(6) + f(7) + f(8) , which is equivalent to [ f ( 1 ) f ( 5 ) ] + [ f ( 2 ) f ( 6 ) ] + [ f ( 3 ) f ( 7 ) ] + [ f ( 4 ) f ( 8 ) ] > 0 [f(1) - f(5) ] + [ f(2) - f(6) ] + [ f(3) - f(7) ] + [ f(4) - f(8) ] > 0 .

Let g ( x ) = f ( x ) f ( x 4 ) = x 2 ( x 4 ) 2 + ( 17 x ) 2 ( 13 x ) 2 = 8 ( x 2 ) + 8 ( 15 x ) = 8 × 13 > 0 g(x) = f(x) - f(x-4) = x^2 - (x-4)^2 + (17-x)^2 - (13 - x)^2 = 8(x-2) + 8(15-x) = 8\times13 > 0 . Thus

[ f ( 1 ) f ( 5 ) ] + [ f ( 2 ) f ( 6 ) ] + [ f ( 3 ) f ( 7 ) ] + [ f ( 4 ) f ( 8 ) ] = g ( 1 ) + g ( 2 ) + g ( 3 ) + g ( 4 ) > 0. [f(1) - f(5) ] + [ f(2) - f(6) ] + [ f(3) - f(7) ] + [ f(4) - f(8) ] = g(1) + g(2) + g(3) + g(4) > 0 .


Method 3: Let E = 1 2 + 2 2 + + 1 6 2 , F = 1 2 + 2 2 + + 1 2 2 , G = 1 2 + 2 2 + 3 2 + 4 2 E = 1^2 + 2^2 + \ldots + 16^2 , F = 1^2 + 2^2 + \cdots + 12^2, G = 1^2 + 2^2 + 3^2 + 4^2 .

We want to prove that E 2 F + 2 G > 0 E > 2 F 2 G E - 2F+ 2G > 0 \qquad \Leftrightarrow \qquad E > 2F - 2G .

Recall the algebraic identity , 1 2 + 2 2 + + n 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) 1^2 + 2^2 + \cdots + n^2 = \dfrac16 n(n+1)(2n+1) , then proving the inequality above is equivalent to

6 E > 2 ( 6 F 2 G ) 16 ( 17 ) ( 33 ) > 2 [ 12 ( 13 ) ( 25 ) 4 ( 5 ) ( 9 ) ] . 6E > 2(6F-2G) \qquad \Leftrightarrow \qquad 16(17)(33) > 2 [ 12(13)(25) - 4(5)(9) ] .

Since it is fairly easy to verify that 16 × 17 × 33 > 12 × 25 × 26 16\times 17\times33 > 12 \times 25 \times26 , the result follows.

Munem Shahriar
Oct 18, 2017

1 2 + 2 2 + 3 3 + 4 2 + 1 3 2 + 1 4 2 + 1 5 2 + 1 6 2 = 876 \color{#3D99F6} 1^2+2^2+3^3+4^2+13^2+14^2+15^2+16^2 = 876

5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 1 0 2 + 1 1 2 + 1 2 2 = 620 \color{#D61F06} 5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 = 620

Hence 876 > 620 \color{#3D99F6}{876} \color{#20A900}> \color{#D61F06} {620}

Is there a way to see this other than just adding up the squares?

Agnishom Chattopadhyay - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...