Which sum is larger?
1 2 2 2 3 2 4 2 ∣ 5 2 6 2 7 2 8 2 ∣ 9 2 1 0 2 1 1 2 1 2 2 ∣ 1 3 2 1 4 2 1 5 2 1 6 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1 2 + 2 2 + 3 3 + 4 2 + 1 3 2 + 1 4 2 + 1 5 2 + 1 6 2 = 8 7 6
5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 1 0 2 + 1 1 2 + 1 2 2 = 6 2 0
Hence 8 7 6 > 6 2 0
Is there a way to see this other than just adding up the squares?
Problem Loading...
Note Loading...
Set Loading...
Method 1:
Let A = 1 2 + 2 2 + 3 2 + 4 2 , B 2 = 5 2 + 6 2 + 7 2 + 8 2 , C = 9 2 + 1 0 2 + 1 1 2 + 1 2 2 , D = 1 3 2 + 1 4 2 + 1 5 2 + 1 6 2 .
Essentially we want to prove that D + A > B + C , which is equivalent to D − C > B − A .
Recall the difference of 2 squares identity , a 2 − b 2 = ( a + b ) ( a − b ) .
So D − C = = = ( 1 3 2 − 9 2 ) + ( 1 4 2 − 1 0 2 ) + ( 1 5 2 − 1 1 2 ) + ( 1 6 2 − 1 2 2 ) ( 1 3 − 9 ) ( 1 3 + 9 ) + ( 1 4 − 1 0 ) ( 1 4 + 1 0 ) + ( 1 5 − 1 1 ) ( 1 5 + 1 1 ) + ( 1 6 − 1 2 ) ( 1 6 + 1 2 ) 4 ( 9 + 1 0 + 1 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 ) .
Likewise, we should get B − A = 4 ( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 ) .
Since it is obvious that 9 + 1 0 + 1 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 > 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 , then D − C > B − A , and we're done.
Method 2 : Let f ( x ) = x 2 + ( 1 7 − x ) 2 . We want to prove that f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 4 ) > f ( 5 ) + f ( 6 ) + f ( 7 ) + f ( 8 ) , which is equivalent to [ f ( 1 ) − f ( 5 ) ] + [ f ( 2 ) − f ( 6 ) ] + [ f ( 3 ) − f ( 7 ) ] + [ f ( 4 ) − f ( 8 ) ] > 0 .
Let g ( x ) = f ( x ) − f ( x − 4 ) = x 2 − ( x − 4 ) 2 + ( 1 7 − x ) 2 − ( 1 3 − x ) 2 = 8 ( x − 2 ) + 8 ( 1 5 − x ) = 8 × 1 3 > 0 . Thus
[ f ( 1 ) − f ( 5 ) ] + [ f ( 2 ) − f ( 6 ) ] + [ f ( 3 ) − f ( 7 ) ] + [ f ( 4 ) − f ( 8 ) ] = g ( 1 ) + g ( 2 ) + g ( 3 ) + g ( 4 ) > 0 .
Method 3: Let E = 1 2 + 2 2 + … + 1 6 2 , F = 1 2 + 2 2 + ⋯ + 1 2 2 , G = 1 2 + 2 2 + 3 2 + 4 2 .
We want to prove that E − 2 F + 2 G > 0 ⇔ E > 2 F − 2 G .
Recall the algebraic identity , 1 2 + 2 2 + ⋯ + n 2 = 6 1 n ( n + 1 ) ( 2 n + 1 ) , then proving the inequality above is equivalent to
6 E > 2 ( 6 F − 2 G ) ⇔ 1 6 ( 1 7 ) ( 3 3 ) > 2 [ 1 2 ( 1 3 ) ( 2 5 ) − 4 ( 5 ) ( 9 ) ] .
Since it is fairly easy to verify that 1 6 × 1 7 × 3 3 > 1 2 × 2 5 × 2 6 , the result follows.