Larger Summation

Calculus Level 3

Which symbol should be used between the two summations below? x = 1 1 7 x ? x = 1 1 2 x x \sum_{x=1}^\infty \frac{1}{7x} \ \boxed{?} \ \sum _{x=1}^\infty \frac{1}{2^{x}-x}

= < >

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Mar 26, 2018

Note that x = 1 1 7 x = 1 7 x = 1 1 x \displaystyle\sum_{x=1}^{\infty} \dfrac{1}{7x} = \dfrac{1}{7} \displaystyle\sum_{x=1}^{\infty} \dfrac{1}{x} is Harmonic series whose value doesn't converge since the value of sum depends upon the upper limit of sum .

Also the infinity sum is 1 < x = 1 1 2 x x 2 1 < \displaystyle\sum_{x=1}^{\infty}\dfrac{1}{2^x -x} \leq 2 Well I don't find any nice way to sum it less than 2. However, let's show it less than 2 1 2 c < 1 = 1 1 2 + 1 4 c < 1 + 1 2 1 + 1 1 + 2 1 2 + 1 4 + 1 8 c < 1 + 1 2 + 1 5 1 + 1 1 + 2 + 1 1 + 2 + 3 1 2 + 1 4 + 1 8 + 1 16 + < 1 + 1 2 + 1 5 + 1 12 + 1 + 1 1 + 2 + 1 1 + 2 + 3 + 1 1 + 2 + 3 + 4 x = 1 1 2 x < x = 1 1 2 x x 2 1 < x = 1 1 2 x x 2 \begin{aligned} &{\color{#3D99F6}\dfrac{1}{2}} \phantom{c}< {\color{#D61F06}1} = {\color{#20A900}1} \\& {\color{#3D99F6}\dfrac{1}{2}+ \dfrac{1}{4}}\phantom{c} < {\color{#D61F06}1+ \dfrac{1}{2}} \geq{\color{#20A900} 1+\dfrac{1}{1+2}} \\& {\color{#3D99F6}\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}}\phantom{c} <{\color{#D61F06} 1 +\dfrac{1}{2}+\dfrac{1}{5}} \geq {\color{#20A900}1+\dfrac{1}{1+2} +\dfrac{1}{1+2+3}}\\& {\color{#3D99F6}\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16} + \cdots }< 1 + {\color{#D61F06}\dfrac{1}{2} + \dfrac{1}{5} + \dfrac{1}{12} +\cdots} \leq {\color{#20A900}1+ \dfrac{1}{1+2}+\dfrac{1}{1+2+3}+ \dfrac{1}{1+2+3+4}\cdots} \\& \displaystyle\sum_{x=1}^{\infty}\dfrac{1}{2^x} < \displaystyle\sum_{x=1}^{\infty} \dfrac{1}{2^x-x} \leq 2 \\& 1< \displaystyle\sum_{x=1}^{\infty} \dfrac{1}{2^x-x}\leq 2 \end{aligned}

Therefore, x = 1 1 7 x > x = 1 1 2 x x \small\displaystyle\sum_{x=1}^{\infty} \dfrac{1}{7x} \boxed{\large > }\displaystyle\sum_{x=1}^{\infty} \dfrac{1}{2^x-x} is the answer.

Chew-Seong Cheong
Mar 28, 2018

Relevant wiki: Convergence - Ratio Test

We note that the LHS x = 1 1 7 x = 1 7 x = 1 1 x \displaystyle \sum_{x=1}^\infty \frac 1{7x} = \frac 17 \sum_{x=1}^\infty \frac 1x \to \infty . It is known that the harmonic series H n = k = 1 n 1 k \displaystyle H_n = \sum_{k=1}^n \frac 1k does not converge.

Now, let us apply the ratio test to the RHS:

L = lim x a x + 1 a x where a x is the x th term of the summation. = lim x 2 x x 2 x + 1 x 1 Divide up and down by 2 x = lim x 1 x 2 x 2 x 2 x 1 2 x See note lim x x 2 x = 0 = 1 2 < 1 \begin{aligned} L & = \lim_{x\to \infty} \left| \frac {a_{x+1}}{a_x} \right| & \small \color{#3D99F6} \text{where }a_x \text{ is the }x \text{th term of the summation.} \\ & = \lim_{x\to \infty} \left| \frac {2^x-x}{2^{x+1}-x-1} \right| & \small \color{#3D99F6} \text{Divide up and down by }2^x \\ & = \lim_{x\to \infty} \left| \frac {1-\frac x{2^x}}{2-\frac x{2^x}-\frac 1{2^x}} \right| & \small \color{#3D99F6} \text{See note }\lim_{x\to \infty} \frac x{2^x} = 0 \\ & = \frac 12 < 1 \end{aligned}

Implying that RHS converges and hence x = 1 1 7 x > x = 1 1 2 x x \displaystyle \sum_{x=1}^\infty \frac 1{7x} \ \boxed{>} \ \sum_{x=1}^\infty \frac 1{2^x-x} .


Note: reference: L'Hôpital's rule

L = lim x x 2 x A / case, L’H o ˆ pital’s rule applies. = lim x 1 2 x ln 2 Divide up and down w.r.t. x = 0 \begin{aligned} L & = \lim_{x \to \infty} \frac x{2^x} & \small \color{#3D99F6} \text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.} \\ & = \lim_{x \to \infty} \frac 1{2^x\ln 2} & \small \color{#3D99F6} \text{Divide up and down w.r.t. }x \\ & = 0 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...