Largest n n ?

Algebra Level 2

If 1 0 n 10^n divides ( 2 10 5 ) ( 5 2 10 ) 1 0 5 2 \large \dfrac{\big(2^{10{^5}}\big)\big(5^{2^{10}}\big)}{10^{5^{2}}} , then what is the greatest value of n n ?


The answer is 999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Henry U
Mar 23, 2019

( 2 1 0 5 ) ( 5 2 10 ) 1 0 5 2 = ( 2 1 0 5 ) ( 5 2 10 ) ( 2 5 2 ) ( 5 5 2 ) = 2 1 0 5 2 5 2 5 2 10 5 5 2 = 2 1 0 5 5 2 5 2 10 5 2 = 2 100000 25 5 1024 25 = 2 99974 5 999 \begin{aligned} & \frac {\left( 2^{10^5} \right) \left( 5^{2^{10}} \right)} {10^{5^2}} \\ =& \frac {\left( 2^{10^5} \right) \left( 5^{2^{10}} \right)} {\left(2^{5^2}\right) \left(5^{5^2}\right)} \\ =& \frac {2^{10^5}} {2^{5^2}} \cdot \frac {5^{2^{10}}} {5^{5^2}} \\ =& 2^{10^5 - 5^2} \cdot 5^{2^{10} - 5^2} \\ =& 2^{100000-25} \cdot 5^{1024-25} \\ =& 2^{99974} \cdot 5^{999} \end{aligned}

Therefore, the greatest value of n n is n = 999 \boxed{n = 999} .

Chew-Seong Cheong
Mar 24, 2019

Let N = 2 1 0 5 × 5 2 10 1 0 5 2 = 2 100000 × 5 1024 1 0 25 = 2 98976 × 1 0 1024 1 0 25 = 2 98976 × 1 0 999 N = \dfrac {2^{10^5}\times 5^{2^{10}}}{10^{5^2}} = \dfrac {2^{100000} \times 5^{1024}}{10^{25}} = \dfrac {2^{98976} \times 10^{1024}}{10^{25}} = 2^{98976} \times 10^{999} . Therefore the largest divisor of 1 0 n 10^n is 1 0 999 10^{999} , that is n = 999 n=\boxed{999} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...