Largest of 5 prime factors: 1 3 4 6 5 + 5 9 13^4 - 6^5 + 5^9

Given that 1 3 4 6 5 + 5 9 13^4 - 6^5 + 5^9 is the product of exactly 5 distinct prime factors, what is the largest?


The answer is 3463.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Yao
Mar 24, 2019

By rewriting 1 3 4 6 5 + 5 9 = ( 1 3 4 6 4 ) + 5 ( 2 5 4 6 4 ) 13^4 -6^5 + 5^9 = (13^4 - 6^4) + 5(25^4- 6^4) , we have the factorization 1 3 4 6 5 + 5 9 = ( 1 3 4 6 4 ) + 5 ( 2 5 4 6 4 ) = ( 13 6 ) ( 13 + 6 ) ( 1 3 2 + 6 2 ) + 5 ( 25 6 ) ( 25 + 6 ) ( 2 5 2 + 6 2 ) = ( 7 ) ( 19 ) ( 205 ) + 5 ( 19 ) ( 31 ) ( 661 ) = ( 5 19 ) ( 7 41 + 31 661 ) \begin{aligned} 13^4 -6^5 + 5^9 & = (13^4 - 6^4) + 5(25^4 - 6^4) \\ & = (13 - 6)(13 + 6)(13^2 + 6^2) + 5(25 - 6)(25 + 6)(25^2 + 6^2) \\ & = (7)(19)(205) + 5(19)(31)(661) \\ & = (5 \cdot 19)(7 \cdot 41 + 31 \cdot 661) \end{aligned} From here, we evaluate 7 41 + 31 661 = 20778 7 \cdot 41 + 31 \cdot 661 = 20778 , which is divisible by 2 3 2 \cdot 3 as it is even and has digit sum 24 24 , a multiple of 3. We have now identified four prime factors of 1 3 4 6 5 + 5 9 13^4 - 6^5 + 5^9 . Since we are given that there are five total, the last one must be 20778 / 6 = 3463 20778 / 6 = 3463 , which is the largest and thus the answer.

Chew-Seong Cheong
Mar 25, 2019

1 3 4 6 5 + 5 9 = 1 3 4 ( 5 + 1 ) 6 4 + 5 9 = 1 3 4 6 4 + 5 ( 5 8 6 4 ) = ( 1 3 2 6 2 ) ( 1 3 2 + 6 2 ) + 5 ( 5 4 6 2 ) ( 5 4 + 6 2 ) = ( 169 36 ) ( 169 36 ) + 5 ( 625 36 ) ( 625 + 36 ) = 133 ( 205 ) + 5 ( 589 ) ( 661 ) = 5 ( 133 ( 41 ) + ( 589 ) ( 661 ) ) = 5 ( 7 19 ( 41 ) + ( 19 31 ) ( 661 ) ) = 5 19 ( 7 ( 41 ) + 31 ( 661 ) ) = 5 19 ( 287 + 20491 ) = 5 19 ( 20778 ) 20778 is even hence divisible by 2 = 2 5 19 ( 10389 ) Digit sum of 10389 is 21, hence divisible by 3 = 2 3 5 19 3463 \begin{aligned} 13^4-6^5+5^9 & = 13^4-(5+1)6^4+5^9 \\ & = 13^4-6^4+5(5^8-6^4) \\ & = (13^2-6^2)(13^2+6^2) + 5(5^4-6^2)(5^4+6^2) \\ & = (169-36)(169-36) + 5(625-36)(625+36) \\ & = 133(205) + 5(589)(661) \\ & = 5\big(133(41) + (589)(661)\big) \\ & = 5\big(7\cdot 19 (41) + (19\cdot 31)(661)\big) \\ & = 5\cdot 19 \big(7(41) + 31(661)\big) \\ & = 5\cdot 19 \big(287 + 20491\big) \\ & = 5\cdot 19 \left(\color{#3D99F6}20778\right) & \small \color{#3D99F6} 20778 \text{ is even hence divisible by }2 \\ & = 2 \cdot 5\cdot 19 \left(\color{#3D99F6}10389 \right) & \small \color{#3D99F6} \text{Digit sum of 10389 is 21, hence divisible by 3} \\ & = 2 \cdot 3 \cdot 5\cdot 19 \cdot \color{#3D99F6} 3463 \end{aligned}

Therefore the largest prime factor is 3463 \boxed{3463} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...