Largest solution

Algebra Level 4

3 x 2 18 x + 52 + 2 x 2 12 x + 162 = x 2 + 6 x + 280 \sqrt {3x^2-18x+52}+\sqrt{2x^2-12x+162} = \sqrt{-x^2+6x+280}

Find the largest integer solution of the equation above.

(IMC 2001)


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 17, 2018

3 x 2 18 x + 52 + 2 x 2 12 x + 162 = x 2 + 6 x + 280 3 ( x 2 6 x + 9 ) + 25 + 2 ( x 2 8 x + 9 ) + 144 = ( x 2 6 x + 9 ) + 289 3 ( x 3 ) 2 + 25 + 2 ( x 3 ) 2 + 144 = ( x 3 ) 2 + 289 Let u = ( x 3 ) 2 3 u + 25 + 2 u + 144 = u + 289 Squaring both sides 3 u + 25 + 2 ( 3 u + 25 ) ( 2 u + 144 ) + 2 u + 144 = 289 u Rearranging 2 6 u 2 + 482 u + 3600 = 120 6 u Squaring both sides 4 ( 6 u 2 + 482 u + 3600 ) = 36 u 2 1440 u + 14400 Rearranging 12 u 2 3368 u = 0 u ( 3 u 842 ) = 0 \begin{aligned} \sqrt{3x^2-18x+52} + \sqrt{2x^2-12x+162} & = \sqrt{-x^2+6x+280} \\ \sqrt{3(x^2-6x+9)+25} + \sqrt{2(x^2-8x+9)+144} & = \sqrt{-(x^2-6x+9)+289} \\ \sqrt{3{\color{#3D99F6}(x-3)^2}+25} + \sqrt{2{\color{#3D99F6}(x-3)^2}+144} & = \sqrt{-{\color{#3D99F6}(x-3)^2}+289} & \small \color{#3D99F6} \text{Let }u = (x-3)^2 \\ \sqrt{3{\color{#3D99F6}u}+25} + \sqrt{2{\color{#3D99F6}u}+144} & = \sqrt{-{\color{#3D99F6}u}+289} & \small \color{#3D99F6} \text{Squaring both sides} \\ 3u+25 + 2\sqrt{(3u+25)(2u+144)} +2u+144 & = 289 - u & \small \color{#3D99F6} \text{Rearranging} \\ 2\sqrt{6u^2+482u+3600} & = 120 - 6u & \small \color{#3D99F6} \text{Squaring both sides} \\ 4(6u^2+482u+3600) & = 36u^2 -1440u + 14400 & \small \color{#3D99F6} \text{Rearranging} \\ 12u^2-3368u & = 0 \\ u(3u-842) & = 0 \end{aligned}

{ u = ( x 3 ) 2 = 0 x = 3 u = ( x 3 ) 2 = 842 3 x = 842 3 + 3 \implies \begin{cases} u = (x-3)^2 = 0 & \implies x = 3 \\ u = (x-3)^2 = \dfrac {842}3 & \implies x = \sqrt{\dfrac{842}3} + 3 \end{cases}

Therefore, the integral solution is 3 \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...