Largest Square inside the Triangle

Geometry Level pending

Find the side length of the largest square that can be drawn inside the equilateral triangle of unit side length.


The answer is 0.4641.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let one of the vertex of the square be at the distance of a a from one vertex of the equilateral triangle as shown in figure. Now the two sides of square from this vertex is at angle of θ \theta and 90 ° θ 90\degree - \theta as shown. Let the side length of square be s s .

Now applying sine rule in both the smaller triangle, we get

s sin 60 ° = a sin ( 30 ° + θ ) \Large \frac{s}{\text{sin}60\degree} = \frac{a}{\text{sin}(30\degree + \,\theta)}\hspace{50pt} and s sin 60 ° = 1 a sin ( 120 ° θ ) \hspace{50pt}\Large \frac{s}{\text{sin}60\degree} = \frac{1-a}{\text{sin}(120\degree - \, \theta)}

From both the equation we get

a sin ( 120 ° θ ) = ( 1 a ) sin ( 30 ° + θ ) ( sin ( 30 ° + θ ) + sin ( 120 ° θ ) ) a = sin ( 30 ° + θ ) 2 a sin 75 ° cos ( 45 ° θ ) = sin ( 30 ° + θ ) a\,\text{sin}(120\degree - \theta) = (1-a)\text{sin}(30\degree + \theta)\newline \Rightarrow (\text{sin}(30\degree+ \theta) + \text{sin}(120\degree - \theta))a = \text{sin}(30\degree + \theta)\newline \Rightarrow 2a\,\text{sin}75\degree\text{cos}(45\degree-\theta) = \text{sin}(30\degree+\theta)

a = sin ( 30 ° + θ ) 2 sin 75 ° cos ( 45 ° θ ) \Rightarrow a = \Large \frac{\text{sin}(30\degree+\theta)}{2\,\text{sin}75\degree\text{cos}(45\degree-\theta)}

From a a we get the expression of s s as

s = sin 60 ° 2 sin 75 ° cos ( 45 ° θ ) s = \Large\frac{\text{sin}60\degree}{ 2\,\text{sin}75\degree\text{cos}(45\degree-\theta)}

Now, in order to maximize s s , we have to minimize cos ( 45 ° θ ) \text{cos}(45\degree-\theta) over some range of θ \theta . We have to determine that range.

Two sides of the square are done, now the other two sides can be constructed inside the triangle if and only if the red marked angles in the figure is greater than or equal to 90 ° 90\degree . Expressing this condition in the form of equation :

60 ° + θ 90 ° 60\degree+\theta \geq 90\degree \hspace{50pt} and 150 ° θ 90 ° \hspace{50pt} 150\degree-\theta \geq 90\degree

30 ° θ 60 ° 15 ° 45 ° θ 15 ° cos 15 ° cos ( 45 ° θ ) 1 \Rightarrow 30\degree\leq\theta\leq60\degree\newline \Rightarrow -15\degree\leq45\degree-\theta\leq 15\degree\newline \Rightarrow\text{cos} 15\degree \leq \text{cos}(45\degree-\theta)\leq1

The minimum value of cos ( 45 ° θ ) \text{cos}(45\degree-\theta) is cos 15 ° \text{cos}15\degree which occurs either at θ = 30 ° \theta = 30\degree or θ = 60 ° \theta = 60\degree

So, s m a x = sin 60 ° 2 sin 75 ° cos 15 ° = sin 60 ° 2 cos 2 15 ° = sin 60 ° 1 + cos 30 ° = sin 60 ° 1 + sin 60 ° = 3 2 + 3 \, s_{max} = \Large\frac{\text{sin}60\degree}{2\,\text{sin}75\degree\text{cos}15\degree} = \frac{\text{sin}60\degree}{2\,\text{cos}^2 15\degree} = \frac{\text{sin}60\degree}{1 + \text{cos}30\degree} = \frac{\text{sin}60\degree}{1 + \text{sin}60\degree} = \frac{\sqrt{3}}{2+\sqrt{3}} = 3 ( 2 3 ) = 2 3 3 0.4641 = \sqrt{3}(2 - \sqrt{3}) = 2\sqrt{3} - 3 \approx 0.4641

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...