Largest Sum

Algebra Level 4

Let x 1 , x 2 , x 3 , y 1 , y 2 , y 3 x_1,x_2,x_3,y_1,y_2,y_3 be the first six prime numbers. Find the largest possible sum:

i = 1 3 j = 1 3 x i y j . \sum_{i=1}^3\sum_{j=1}^3 x_iy_j.


The answer is 420.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Piyushkumar Palan
Dec 30, 2013

Let i = 1 3 x i = X \displaystyle \sum_{i=1}^3 x_i = X and j = 1 3 y j = Y \displaystyle \sum_{j=1}^3 y_j =Y

X + Y = 2 + 3 + 5 + 7 + 11 + 13 = 41 X + Y = 2 + 3 + 5 + 7 + 11 + 13 = 41

i = 1 3 j = 1 3 x i y j = i = 1 3 x i × j = 1 3 y j = X × Y \displaystyle \sum_{i=1}^3 \displaystyle \sum_{j=1}^3 x_i y_j = \displaystyle \sum_{i=1}^3 x_i \times \displaystyle \sum_{j=1}^3 y_j = X \times Y

But 4 X Y = ( X + Y ) 2 ( X Y ) 2 X Y 4XY = (X + Y)^2 - (X-Y)^2 \implies XY is maximized when ( X Y ) 2 (X-Y)^2 is minimum. ( X Y ) 2 = 1 \implies (X-Y)^2 = 1 ... (0 is Not possible as X, Y are integers adding up to 41)

This is achievable at X = 20 , Y = 21 X = 20, Y =21 or X = 21 , Y = 20 X = 21, Y = 20 (e.g. x i = 2 , 7 , 11 , y j = 3 , 5 , 13 x_i = 2, 7, 11, y_j = 3, 5, 13 )

So ans. 20 × 21 = 420 20 \times 21 = \boxed{420}

George G
Dec 30, 2013

Let x = x 1 + x 2 + x 3 , y = y 1 + y 2 + y 3 x=x_1+x_2+x_3, y=y_1+y_2+y_3 , then x + y = 2 + 3 + 5 + 7 + 11 + 13 = 41 x+y=2+3+5+7+11+13=41 , and the sum in the problem is: x y = 1 4 [ ( x + y ) 2 ( x y ) 2 ] = 1 4 [ 4 1 2 ( x y ) 2 ] xy = \frac{1}{4}[(x+y)^2-(x-y)^2] = \frac{1}{4}[41^2 - (x-y)^2]

To maximize x y xy , x x and y y need to be as close as possible, so we can let x = 2 + 7 + 11 = 20 x=2+7+11=20 and y = 3 + 5 + 13 = 21 y=3+5+13=21 . Hence the largest value of the sum is x y = 420 xy=420 .

The sum we are looking for is i = 1 3 ( x i y 1 + x i y 2 + x i y 3 ) = ( x 1 + x 2 + x 3 ) ( y 1 + y 2 + y 3 ) \sum_{i=1}^3 (x_i y_1+x_i y_2+x_i y_3)=(x_1+x_2+x_3)(y_1+y_2+y_3) .

Now, notice that the sum x 1 + x 2 + x 3 + y 1 + y 2 + y 3 = 2 + 3 + 5 + 7 + 11 + 13 = 41 x_1+x_2+x_3+y_1+y_2+y_3=2+3+5+7+11+13=41 . Let x 1 + x 2 + x 3 = a x_1+x_2+x_3=a and y 1 + y 2 + y 3 = b y_1+y_2+y_3=b .

We know that a + b = 41 a+b=41 , and want to maximize a b ab . The maximum occurs at a = 20 , b = 21 a=20, b=21 , or vice versa*

To show that this is attainable, let ( x 1 , x 2 , x 3 , y 1 , y 2 , y 3 ) = ( 2 , 7 , 11 , 3 , 5 , 13 ) (x_1, x_2, x_3, y_1, y_2, y_3)=(2, 7, 11, 3, 5, 13) . It follows that a = 2 + 7 + 11 = 20 a=2+7+11=20 and b = 3 + 5 + 13 = 21 b=3+5+13=21 , so a b = 420 ab=\boxed{420}

*The maximum actually occurs at ( a , b ) = ( 41 2 , 41 2 ) (a, b)=(\frac{41}{2} , \frac{41}{2}) , but a , b a, b must be integers. (Do you see why?)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...