Last 2 digits????

Number Theory Level pending

Find the last 2 digits of 1 40 + 2 40 + 3 40 + + 12 3 40 1^{40} + 2^{40} +3^{40} +\cdots +123^{40}


The answer is 74.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mathh Mathh
May 22, 2015

100 = 2 2 5 2 100=2^2\cdot 5^2 . ( 1 ) 40 1 ( m o d 4 ) \,(-1)^{40}\equiv 1\pmod{\! 4} , so

A : = 1 40 + 2 40 + 3 40 + + 12 3 40 1 + 0 + 1 + 0 + + 0 + 1 A:=1^{40}+2^{40}+3^{40}+\cdots+123^{40}\equiv 1+0+1+0+\cdots +0+1

62 2 ( m o d 4 ) A = 4 k + 2 \equiv 62\equiv 2\pmod{\! 4}\,\Rightarrow\, A=4k+2 with k Z k\in\Bbb Z .

a 40 a 40 ( m o d 20 ) a 0 1 a^{40}\equiv a^{40\pmod{\! 20}}\equiv a^0\equiv 1 mod 25 25 for 5 a 5\nmid a by Euler's theorem.

mod 25 25 : 4 k + 2 1 + 1 + 1 + 1 + 0 + 99 1 \ 4k+2\equiv 1+1+1+1+0+\cdots\equiv 99\equiv -1

\iff 4k\equiv -3\equiv -28\stackrel{:4}\iff k\equiv -7\equiv 18

k = 25 m + 18 \,\Rightarrow\, k=25m+18 with m Z m\in\Bbb Z .

A = 4 ( 25 m + 18 ) + 2 = 100 m + 74 A=4(25m+18)+2=100m+74 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...