Last 3 digits of a perfect cube.

The last three digits of the cube of a positive integer n n are 929 929 . What is the minimum value of n n ?


The answer is 409.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sathvik Acharya
Dec 21, 2020

Since the last three digits of n 3 n^3 is 929 929 , n 3 929 ( m o d 1000 ) n^3\equiv 929 \pmod {1000} n 3 29 ( m o d 100 ) n^3\equiv 29 \pmod {100} n 3 9 ( m o d 10 ) n^3\equiv 9 \pmod {10} If a cube of number ends with 9 9 , then the number must also end with 9 9 . n 9 ( m o d 10 ) n\equiv 9\pmod {10} n 3 = ( 10 x + 9 ) 3 = ( 10 x ) 3 + 3 ( 10 x ) 2 9 + 3 ( 10 x ) 9 2 + 9 3 \implies n^3=(10x+9)^3=(10x)^3+3\cdot (10x)^2\cdot 9+3\cdot (10x)\cdot 9^2+9^3 = 1000 x 3 + 2700 x 2 + 2430 x + 729 \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; =1000x^3+2700x^2+2430x+729 Considering the last two digits of n 3 n^3 , n 3 30 x + 29 29 ( m o d 100 ) n^3\equiv 30x+29 \equiv 29 \pmod {100} x 10 ( m o d 100 ) \; \; \; \; \; \; \; \; \; \; \; \implies x\equiv 10 \pmod{100} So the tens digit of n n must be 0 0 . n 9 ( m o d 100 ) n\equiv 9 \pmod{100} n 3 = ( 100 y + 09 ) 3 = ( 100 y ) 3 + 3 ( 100 y ) 2 9 + 3 ( 100 y ) 9 2 + 9 3 \implies n^3=(100y+09)^3=(100y)^3+3\cdot (100y)^2\cdot 9+3\cdot (100y)\cdot 9^2+9^3 = 1000000 x 3 + 270000 x 2 + 24300 x + 729 \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;\;\; \; =1000000x^3+270000x^2+24300x+729 Considering the last three digits of n 3 n^3 , n 3 300 y + 729 929 ( m o d 1000 ) n^3\equiv 300y+729\equiv929 \pmod{1000} 300 y 200 ( m o d 1000 ) \; \; \; \; \; \; \; \; \; \;\implies 300y\equiv 200 \pmod{1000} y 4 ( m o d 1000 ) \; \;\; \; \;\; \;\; \;\; \;\; \;\implies y\equiv 4 \; \; \; \;\; \;\pmod{1000} So the hundreds digits must be 4 4 . Therefore, the least value of n n is 409 \boxed{409} .


Verification: 40 9 3 = 68417 929 409^3=68417\underline{929}

You first say n n "must end in 9 9 " and then later say "the units digit of n n must be 0 0 ." I think you mean to say "the units digit of x x must be 0 0 ."

Richard Desper - 5 months, 3 weeks ago

Log in to reply

Thank you, I have corrected it.

Sathvik Acharya - 5 months, 3 weeks ago
Chew-Seong Cheong
Dec 21, 2020

The last three digits of n 3 n^3 is 929 929 implies that { n 3 929 (mod 1000) n 3 29 (mod 100) n 3 9 (mod 10) \begin{cases} n^3 \equiv 929 \text{ (mod 1000)} \\ n^3 \equiv 29 \text{ (mod 100)} \\ n^3 \equiv 9 \text{ (mod 10)} \end{cases}

Let n 10 a + b n \equiv 10a + b , where a a and b b are non-negative integers and b 9 b \le 9 . Then by Chinese remainder theorem :

n 3 9 (mod 10) 1000 a 3 + 300 a 2 b + 30 a b 2 + b 3 9 (mod 10) b 3 9 (mod 10) \begin{aligned} n^3 & \equiv 9 \text{ (mod 10)} \\ 1000a^3 + 300a^2b + 30ab^2 + b^3 & \equiv 9 \text{ (mod 10)} \\ \implies b^3 & \equiv 9 \text{ (mod 10)} \end{aligned}

For 0 b 9 0\le b \le 9 , only 9 3 9 (mod 10) 9^3 \equiv 9 \text{ (mod 10)} . Therefore b = 9 b=9 and n = 10 a + 9 n = 10a + 9 and

1000 a 3 + 2700 a 2 + 2430 a + 729 29 (mod 100) 30 a + 29 29 (mod 100) 30 a 0 (mod 100) a 0 (mod 100) 100 a 0 (mod 100) n 100 a + 9 \begin{aligned} 1000a^3 + 2700a^2 + 2430a + 729 & \equiv 29 \text{ (mod 100)} \\ 30a + 29 & \equiv 29 \text{ (mod 100)} \\ 30a & \equiv 0 \text{ (mod 100)} \\ \implies a & \equiv 0 \text{ (mod 100)} \\ \implies 100a & \equiv 0 \text{ (mod 100)} \\ \implies n & \equiv 100 a + 9 \end{aligned}

And

n 3 929 (mod 1000) 1 0 6 a 3 + 27 1 0 4 a 2 + 24300 a + 729 929 (mod 1000) 300 a + 729 929 (mod 1000) 300 a 200 (mod 1000) a 4 n 100 a + 9 409 \begin{aligned} n^3 & \equiv 929 \text{ (mod 1000)} \\ 10^6 a^3 + 27\cdot 10^4 a^2 + 24300 a + 729 & \equiv 929 \text{ (mod 1000)} \\ 300 a + 729 & \equiv 929 \text{ (mod 1000)} \\ 300 a & \equiv 200 \text{ (mod 1000)} \\ \implies a & \equiv 4 \\ \implies n & \equiv 100a + 9 \equiv \boxed{409} \end{aligned}

30 a 0 ( m o d 100 ) a 0 ( m o d 100 ) 30a\equiv 0 \pmod{100} \implies a\equiv 0 \pmod{100}

I believe this is a mistake. It only implies that a 0 ( m o d 10 ) a\equiv 0 \pmod {10} , but the result would still remain the same.

Sathvik Acharya - 5 months, 3 weeks ago

Log in to reply

Thanks, I thought of the answer

Chew-Seong Cheong - 5 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...