Find last 3 digits in decimal representation of:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
9 6 1 1 6 9 9 ≡ 9 6 1 1 6 9 9 m o d λ ( 1 0 0 0 ) (mod 1000) ≡ 9 6 1 1 6 9 9 m o d 1 0 0 (mod 1000) ≡ 9 6 1 6 9 9 m o d 1 0 0 (mod 1000) ≡ 9 6 1 2 9 ≡ 3 1 2 × 2 9 (mod 1000) ≡ 3 1 5 8 (mod 1000) ≡ 4 4 1 Since g cd ( 9 6 1 , 1 0 0 0 ) = 1 , Euler’s theorem applies. Carmichael lambda function λ ( 1 0 0 0 ) = 1 0 0 By modular inverse (see note) By modular inverse (see note)
Modular Inverse
Case 1: We note that 6 9 1 0 ≡ ( 7 0 − 1 ) 1 0 ≡ 1 (mod 100) ⟹ 6 9 × 6 9 9 ≡ 1 (mod 100) . Let 6 9 9 m o d 1 0 0 = a b = 1 0 a + b , since 6 9 ≡ 6 9 (mod 100) , we have
6 9 ( 1 0 a + b ) 9 0 a + 6 9 b 9 0 a + 6 2 1 ⟹ 6 9 9 ≡ 1 (mod 100) ≡ 1 (mod 100) ≡ 0 1 (mod 100) ≡ a b ≡ 2 9 (mod 100) For RHS to end with 1, b must be 9 so that 9 × 9 = 8 1 For tenth digit = 0, a must be 2 so that 9 × 2 + 2 = 2 0
Case 2: Similarly,
3 1 6 0 ≡ ( 3 0 + 1 ) 6 0 ≡ ( 3 0 × 6 0 + 1 ) ≡ 8 0 1 (mod 1000)
⟹ 3 1 2 3 1 5 8 9 6 1 ( 1 0 0 p + 1 0 q + r ) 1 0 0 p + 6 1 0 q + 9 6 1 r 1 0 0 p + 6 1 0 q + 9 6 1 1 0 0 p + 4 4 0 + 9 6 1 1 0 0 p + 4 0 1 ⟹ 3 1 5 8 ≡ 8 0 1 (mod 1000) ≡ 8 0 1 (mod 1000) ≡ 8 0 1 (mod 1000) ≡ 8 0 1 (mod 1000) ≡ 8 0 1 (mod 1000) ≡ 8 0 1 (mod 1000) ≡ 4 4 1 (mod 1000) Let 3 1 5 8 m o d 1 0 0 0 = p q r ⟹ r = 1 , ∵ 1 × 1 = 1 ⟹ q = 4 , ∵ 1 × 4 + 6 = 1 0 ⟹ p = 4 , ∵ 1 × 4 + 4 = 8