Last digit

What is the (base 10) last digit of 6 5 4 3 2 1 + 5 4 3 2 1 + 4 3 2 1 + 3 2 1 + 2 1 + 1 6^{5^{4^{3^{2^{1}}}}}+5^{4^{3^{2^{1}}}}+4^{3^{2^{1}}}+3^{2^{1}}+2^{1}+1 ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rahul Kumar
Sep 9, 2014

6 power any number ends with 6, same for 5 also. 4 power if odd then end with 4 else end with 6 . so,adding last digit of number 6+5+4+9+2+1=27

also remainders can be 6,5,4,-1,-9,-9 And that adds to -3 which is congruent to 7.

shivamani patil - 6 years, 7 months ago
Eric Hernandez
Aug 11, 2014

Let l d ( x ) l_{d}(x) denotre the last digit of x, that is, l d ( x ) = x m o d 10 l_{d}(x)=x\:mod\:10 .

You can see that, for n N n \in \mathbb{N} , l d ( 6 n ) = 6 l_{d}(6^{n})=6 , and l d ( 5 n ) = 5 l_{d}(5^{n})=5 .

For x ( N \ 2 N ) x \in (\mathbb{N} \backslash 2\mathbb{N}) , l d ( 4 x ) = 4 l_{d}(4^{x})=4 .

3 2 1 = 9 , 2 1 = 2 3^{2^{1}}=9, 2^{1}=2 , and 1 = 1 1=1 .

Therefore, as l d ( x ) = ( l d ( y ) + l d ( z ) ) m o d 10 l_{d}(x)=(l_{d}(y)+l_{d}(z))\:mod\:10 , where x = y + z x=y+z , l d ( 6 5 4 3 2 1 + 5 4 3 2 1 + 4 3 2 1 + 3 2 1 + 2 1 + 1 ) = ( l d ( 6 5 4 3 2 1 ) + l d ( 5 4 3 2 1 ) + l d ( 4 3 2 1 ) + l d ( 3 2 1 ) + l d ( 2 1 ) + l d ( 1 ) ) m o d 10 l_{d}(6^{5^{4^{3^{2^{1}}}}}+5^{4^{3^{2^{1}}}}+4^{3^{2^{1}}}+3^{2^{1}}+2^{1}+1)=(l_{d}(6^{5^{4^{3^{2^{1}}}}})+l_{d}(5^{4^{3^{2^{1}}}})+l_{d}(4^{3^{2^{1}}})+l_{d}(3^{2^{1}})+l_{d}(2^{1})+l_{d}(1))\:mod\:10 .

By the above, we know this is to be equal to ( 6 + 5 + 4 + 9 + 2 + 1 ) m o d 10 = 27 m o d 10 = 7 (6+5+4+9+2+1)\:mod\:10=27\:mod\:10=7 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...