Last digit

Can you find the last digit of 2^35?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mas Mus
May 30, 2015

2 35 = ( 1024 ) 3 × 32 4 3 × 2 5 64 × 32 4 × 2 8 ( m o d 10 ) 2^{35}=(1024)^{3}\times{32}\equiv4^{3}\times{2^{5}}\equiv64\times{32}\equiv4\times{2}\equiv8\pmod{10}

Sunil Pradhan
May 25, 2015

to find last digit in b^i where b is base ans i is index.

Always find remainder of index ÷ 4,

if remainder is 1 then unit digit is, unit digit of base^1

if remainder is 2 then unit digit is, unit digit of base^2

if remainder is 3 then unit digit is, unit digit of base^3

if remainder is 0 then unit digit is, unit digit of base^4

in 2^35, 35 ÷ 4, remainder is 3

so unit digit is unit digit of 2^3 = 8

let's make a list using brute force:

  • 2 1 2 ( m o d 10 ) 2^1 \equiv 2 \pmod {10}
  • 2 2 4 ( m o d 10 ) 2^2 \equiv 4 \pmod {10}
  • 2 3 8 ( m o d 10 ) 2^3 \equiv 8 \pmod {10}
  • 2 4 6 ( m o d 10 ) 2^4 \equiv 6 \pmod {10}

  • 2 5 2 ( m o d 10 ) 2^5 \equiv 2 \pmod {10}

  • 2 6 4 ( m o d 10 ) 2^6 \equiv 4 \pmod {10}
  • 2 7 8 ( m o d 10 ) 2^7 \equiv 8 \pmod {10}
  • 2 8 6 ( m o d 10 ) 2^8 \equiv 6 \pmod {10}

the pattern here is [ 2 , 4 , 8 , 6 , 2 , 4 , 8 , 6 6 ] [2,4,8,6,2,4,8,6\dots6]

so we need to divide the exponent by 4

35 3 ( m o d 4 ) 35 \equiv 3 \pmod 4 and if the remainder was 3 3 then the last digit is 8 8

1
2
3
4
5
6
7
8
if exponent%4==1:
    return 2
else if exponent%4==2:
    return 4
else if exponent%4==3:
   return 8
else:
    return 6

2 1 = 2 2^1=2

2 2 = 4 2^2=4

2 3 = 8 2^3=8

2 4 = 16 2^4=16

2 5 = 32 2^5=32

The units digits repeat in every cycle of 4 4 . So we divide 35 35 by 4 4 . We have

35 4 = 8 \dfrac{35}{4}=8 remainder 3 3 . So the units digit is 8 8 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...