Last Digit

What is the last digit of

2 2 2013 + 3 2 2013 + 1 + 7 2 2013 + 2 ? \Large { 2 }^{ { 2 }^{ 2013 } }+{ 3 }^{ { 2 }^{ 2013 }+1 }+{ 7 }^{ { 2 }^{ 2013 }+2 } ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jaime Cabrera
Feb 21, 2016

We have powers of 2 2 , 3 3 and 7 7 , so we analyze their last digits: d d 2 d 3 d 4 d 5 2 4 8 6 2 3 9 7 1 3 7 9 3 1 7 \begin{array} { c | c c c c } d & d^2 & d^3 & d ^ 4 & d^ 5\\ \hline 2 & 4 & 8 & 6 & 2 \\ 3 & 9 & 7 & 1 & 3 \\ 7 & 9 & 3 & 1 & 7 \\ \end{array} All repeat in a cycle of four, so we use ( m o d 4 ) \pmod {4} for the powers.

Let n = 2 2013 = ( 2 2 ) 1006 × 2 0 × 2 0 ( m o d 4 ) n=2^{2013}=(2^2)^{1006}\times2\equiv0\times2\equiv0\pmod{4}

For 2 n 2^n , n 0 ( m o d 4 ) 2 n 6 ( m o d 10 ) n\equiv0\pmod4\iff2^n\equiv\ 6\pmod{10} For 3 n + 1 3^{n+1} , n + 1 1 ( m o d 4 ) 3 n + 1 3 ( m o d 10 ) n+1\equiv1\pmod4\iff3^{n+1}\equiv\ 3\pmod{10} For 7 n + 2 7^{n+2} , n + 2 2 ( m o d 4 ) 7 n + 2 9 ( m o d 10 ) n+2\equiv2\pmod4\iff7^{n+2}\equiv\ 9\pmod{10} Then, 6 + 3 + 9 = 18 8 ( m o d 10 ) 6+3+9=18\equiv\boxed{8\pmod{10}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...