Last digit of Prime Tower

Find last three digits in decimal representation of:

31 1 11 3 3 1 1 3 3 \Large 311^{113^{31^{13^3}}}

The answer is also a prime number .


The answer is 71.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 24, 2017

Let the number given by N N . We need to find N m o d 1000 N \bmod 1000 . Since all the numbers in the tower are prime numbers, we can apply Euler's theorem and Carmichael's lambda function . The required Carmichael's lambda values are λ ( 1000 ) = 100 \lambda(1000)=100 , λ ( 100 ) = 20 \lambda(100)=20 , λ ( 20 ) = 4 \lambda(20)=4 and λ ( 4 ) = 2 \lambda(4)=2 .

N 31 1 11 3 3 1 1 3 3 m o d 2 m o d 4 m o d 20 m o d 100 (mod 1000) \Large N \equiv 311^{\color{#3D99F6}113^{\color{#D61F06}31^{\color{#3D99F6}13^{\color{#D61F06}3 \bmod 2} \bmod 4} \bmod 20} \bmod 100} \text{ (mod 1000)}

Then, we have: 3 1 (mod 2) 3 \equiv 1 \text{ (mod 2)} , 1 3 1 1 (mod 4) \implies 13^1 \equiv 1 \text{ (mod 4)} , 3 1 1 11 (mod 20) \implies 31^1 \equiv 11 \text{ (mod 20)} , 11 3 11 1 3 11 ( 10 + 3 ) 10 1 3 1 3 10 ( 13 ) ( 10 1 ) 5 ( 13 ) 49 ( 13 ) 37 (mod 100) \implies 113^{11} \equiv 13^{11} \equiv (10+3)^{10}13^1 \equiv 3^{10}(13) \equiv (10-1)^5(13) \equiv 49(13) \equiv 37 \text{ (mod 100)} and

N 31 1 37 (mod 1000) 31 1 3 N 31 1 40 (mod 1000) ( 721 ) ( 311 ) N ( 300 + 11 ) 40 (mod 1000) 231 N 1 1 40 (mod 1000) 231 N 1 1 40 (mod 1000) 231 N 401 (mod 1000) By modular reverse N = 71 (mod 1000) Note that 231 × 71 401 (mod 1000) \begin{aligned} N & \equiv 311^{37} \text{ (mod 1000)} \\ 311^3N & \equiv 311^{40} \text{ (mod 1000)} \\ (721)(311)N & \equiv (300+11)^{40} \text{ (mod 1000)} \\ 231N & \equiv 11^{40} \text{ (mod 1000)} \\ 231N & \equiv 11^{40} \text{ (mod 1000)} \\ 231N & \equiv 401 \text{ (mod 1000)} & \small \color{#3D99F6} \text{By modular reverse} \\ N & = \boxed{71} \text{ (mod 1000)} & \small \color{#3D99F6} \text{Note that } 231 \times 71 \equiv 401 \text{ (mod 1000)} \end{aligned}

Once again a great solution

Mrigank Shekhar Pathak - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...