Last Digit Problem in 2018

Find the last digit of 201 8 2018 2018^{2018}

2 6 8 4 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 16, 2018

Let N = 201 8 2018 N=2018^{2018} . We need to find N m o d 10 N \bmod 10 . Since gcd ( 2018 , 10 ) 1 \gcd(2018,10) \ne 1 , we have to consider the factors of 10 that are 2 and 5 separately using Chinese remainder theorem .

Factor 2 : N = 201 8 2018 0 (mod 2) N = 2018^{2018} \equiv 0 \text{ (mod 2)}

Factor 5 :

N 201 8 2018 (mod 5) 3 2018 (mod 5) 9 1009 (mod 5) ( 10 1 ) 1009 (mod 5) ( 1 ) 1009 (mod 5) 1 (mod 5) 4 (mod 5) \begin{aligned} N & \equiv 2018^{2018} \text{ (mod 5)} \\ & \equiv 3^{2018} \text{ (mod 5)} \\ & \equiv 9^{1009} \text{ (mod 5)} \\ & \equiv (10-1)^{1009} \text{ (mod 5)} \\ & \equiv (-1)^{1009} \text{ (mod 5)} \\ & \equiv -1 \text{ (mod 5)} \\ & \equiv 4 \text{ (mod 5)} \end{aligned}

Implies that N 5 n + 4 N \equiv 5n+4 , where n n is a positive integer. And we have N 5 n + 4 n 0 (mod 2) N\equiv 5n+4 \equiv n \equiv 0 \text{ (mod 2)} , implying n = 0 n = 0 and N 4 (mod 10) N \equiv \boxed{4} \text{ (mod 10)} .

We need to find 201 8 2018 ( m o d 10 ) 2018^{2018}\pmod{10} .

We know: 201 8 2018 ( m o d 10 ) 2 6054 ( m o d 10 ) 2018^{2018} \pmod{10} \equiv 2^{6054} \pmod{10}

2 1 ( m o d 10 ) 2 ( m o d 10 ) 2^1 \pmod{10} \equiv 2 \pmod{10} 2 2 ( m o d 10 ) 4 ( m o d 10 ) 2^2 \pmod{10} \equiv 4 \pmod{10} 2 3 ( m o d 10 ) 8 ( m o d 10 ) 2^3 \pmod{10} \equiv 8 \pmod{10} 2 4 ( m o d 10 ) 6 ( m o d 10 ) 2^4 \pmod{10} \equiv 6 \pmod{10} 2 5 ( m o d 10 ) 2 ( m o d 10 ) 2^5 \pmod{10} \equiv 2 \pmod{10} 2 6 ( m o d 10 ) 4 ( m o d 10 ) 2^6 \pmod{10} \equiv 4 \pmod{10}

.

.

.

So, we have: 201 8 2018 ( m o d 10 ) 2 6054 ( m o d 10 ) 2 2 ( m o d 10 ) 4 ( m o d 10 ) 2018^{2018} \pmod{10} \equiv 2^{6054} \pmod{10} \equiv 2^2 \pmod{10} \equiv \boxed{4} \pmod{10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...