Last digit: Sum of Alternate Sign Squares

Find the last digit of:

201 8 2 201 7 2 + 201 6 2 201 5 2 + . . . + 2 2 1 2 \large 2018^{2}-2017^{2}+2016^{2}-2015^{2}+...+2^{2}-1^{2}

5 8 1 6 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Francis Kong
Apr 11, 2018

201 8 2 201 7 2 + 201 6 2 201 5 2 + . . . + 2 2 1 2 2018^{2}-2017^{2}+2016^{2}-2015^{2}+...+2^{2}-1^{2}

Group the relevant terms:

= ( 201 8 2 201 7 2 ) + ( 201 6 2 201 5 2 ) + . . . + ( 2 2 1 2 ) =(2018^{2}-2017^{2})+(2016^{2}-2015^{2})+...+(2^{2}-1^{2})

From Difference Of Squares :

= ( 2018 2017 ) ( 2018 + 2017 ) + ( 2016 2015 ) ( 2016 + 2015 ) + . . . + ( 2 1 ) ( 2 + 1 ) =(2018-2017)(2018+2017)+(2016-2015)(2016+2015)+...+(2-1)(2+1)

Notice the multiplication terms with minus sign all equal to 1:

= ( 2018 + 2017 ) + ( 2016 + 2015 ) + . . . + ( 2 + 1 ) =(2018+2017)+(2016+2015)+...+(2+1)

= 2018 + 2017 + 2016 + 2015 + . . . + 2 + 1 =2018+2017+2016+2015+...+2+1

= ( 2018 ) × ( 2018 + 1 ) 2 =\frac{(2018)\times(2018+1)}{2}

= 4074342 2 = 2037171 =\frac{4074342}{2}=2037171

Therefore the last digit of the sum is 1 \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...