Last digits

Find the last 2 digits of 6 2007 + 7 2007 6^{2007}+7^{2007} .

21 23 59 79

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 23, 2017

Since 6 and 100 are not coprime integers, let us consider 6 mod 4 6 \text{ mod }4 and 6 mod 25 6 \text{ mod }25 separately.

6 2007 6 2 × 1002 6 3 3 6 1002 6 3 0 mod 4 \begin{aligned} 6^{2007} & \equiv 6^{2 \times 1002}6^3 \equiv 36^{1002}6^3 \equiv 0 \text{ mod }4 \end{aligned}

6 2007 6 2007 mod ϕ ( 25 ) (mod 25) Since gcd ( 6 , 25 ) = 1 , Euler’s theorem applies. 6 2007 mod 20 (mod 25) Euler’s totient function ϕ ( 25 ) = 20 6 7 (mod 25) 6 3 6 4 (mod 25) 216 ( 1296 ) (mod 25) 16 ( 4 ) (mod 25) 64 11 (mod 25) \begin{aligned} 6^{2007} & \equiv 6^{\color{#3D99F6} 2007 \text{ mod }\phi (25)} \text{ (mod 25)} & \small \color{#3D99F6} \text{Since } \gcd (6,25) = 1 \text{, Euler's theorem applies.} \\ & \equiv 6^{\color{#3D99F6} 2007 \text{ mod }20} \text{ (mod 25)} & \small \color{#3D99F6} \text{Euler's totient function }\phi (25) = 20 \\ & \equiv 6^7 \text{ (mod 25)} \\ & \equiv 6^36^4 \text{ (mod 25)} \\ & \equiv 216(1296) \text{ (mod 25)} \\ & \equiv 16(-4) \text{ (mod 25)} \\ & \equiv -64 \equiv 11 \text{ (mod 25)} \end{aligned}

Since 6 2007 0 (mod 4) 6^{2007} \equiv 0 \text{ (mod 4)} ,

4 n 11 (mod 25) where n is a positive integer. n = 34 \begin{aligned} 4n & \equiv 11 \text{ (mod 25)} & \small \color{#3D99F6} \text{where }n \text{ is a positive integer.} \\ \implies n & = 34 \end{aligned}

6 2007 4 n 4 ( 34 ) 136 36 (mod 100) \begin{aligned} 6^{2007} & \equiv 4n \equiv 4(34) \equiv 136 \equiv 36 \text{ (mod 100)} \end{aligned}

Now we consider

7 2007 7 2007 mod ϕ ( 100 ) (mod 100) Since gcd ( 7 , 100 ) = 1 , Euler’s theorem applies. 7 2007 mod 40 (mod 100) Euler’s totient function ϕ ( 100 ) = 40 7 7 (mod 100) 7 3 7 4 (mod 100) 7 3 4 9 2 (mod 100) 343 ( 50 1 ) 2 (mod 100) 43 ( 1 ) 43 (mod 100) \begin{aligned} 7^{2007} & \equiv 7^{\color{#3D99F6} 2007 \text{ mod }\phi (100)} \text{ (mod 100)} & \small \color{#3D99F6} \text{Since } \gcd (7,100) = 1 \text{, Euler's theorem applies.} \\ & \equiv 7^{\color{#3D99F6} 2007 \text{ mod }40} \text{ (mod 100)} & \small \color{#3D99F6} \text{Euler's totient function }\phi (100) = 40 \\ & \equiv 7^7 \text{ (mod 100)} \\ & \equiv 7^37^4 \text{ (mod 100)} \\ & \equiv 7^349^2 \text{ (mod 100)} \\ & \equiv 343(50-1)^2 \text{ (mod 100)} \\ & \equiv 43(1) \equiv 43 \text{ (mod 100)} \end{aligned}

Therefore, 6 2007 + 7 2007 36 + 43 79 (mod 100) 6^{2007} + 7^{2007} \equiv 36 + 43 \equiv \boxed{79} \text{ (mod 100)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...