Last Three Digit non zero

What is Last Three Digit non zero of 2015 ! 2015!

444 544 344 44 534 34 434

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mas Mus
Apr 30, 2015

This solution is very very very long....May be, somebody will give other solution.

Let us write 2015 ! 2015! on format like below:

2015 ! = ( 5 × 10 × 15 × 20 × 2010 × 2015 ) × ( 1 × 2 × 3 × 4 ) × ( 6 × 7 × 8 × 9 ) × × ( 2011 × 2012 × 2013 × 2014 ) = ( 5 403 × 403 ! ) × ( 1 × 2 × 3 × 4 ) × ( 6 × 7 × 8 × 9 ) × × ( 2011 × 2012 × 2013 × 2014 ) = ( 10 403 × 403 ! ) × 2 403 × ( 1 × 2 × 3 × 4 ) × ( 6 × 7 × 8 × 9 ) × × ( 2011 × 2012 × 2013 × 2014 ) 2015!\\=\color{#D61F06}{\left(5\times{10}\times{15}\times{20}\ldots\times{2010}\times{2015}\right)}\times\\{\left(1\times{2}\times{3}\times{4}\right)}\times{\left(6\times{7}\times{8}\times{9}\right)}\times{\ldots\times{\left(2011\times{2012}\times{2013}\times{2014}\right)}}\\=\color{#D61F06}{\left({5}^{403}\times{403!}\right)}\times\\{\left(1\times{2}\times{3}\times{4}\right)}\times{\left(6\times{7}\times{8}\times{9}\right)}\times{\ldots\times{\left(2011\times{2012}\times{2013}\times{2014}\right)}}\\=\color{#D61F06}{\left({10}^{403}\times{403!}\right)}\times{2^{-403}}\times\\{\left(1\times{2}\times{3}\times{4}\right)}\times{\left(6\times{7}\times{8}\times{9}\right)}\times{\ldots\times{\left(2011\times{2012}\times{2013}\times{2014}\right)}} .

Let us observe all product of each black item in the bracket. We can see that all last three digits of the product is 24 24 . So, we can say that the last three digits of

2015 ! 10 403 ( 403 ! ) × 2 403 ( × 24 × 24 × 24 × 24 ) 403 times ( 403 ! ) ( × 12 × 12 × 12 × 12 ) 403 times ( 403 ! ) × 12 403 ( m o d 1000 ) \begin{array}{c}&\dfrac{2015!}{{10}^{403}}&\equiv\color{#D61F06}{\left(403!\right)}\times{2^{-403}}\underbrace{\left(\times{24}\times{24}\times{24}\ldots\times{24}\right)}_\text{403 times}\\&\equiv\color{#D61F06}{\left(403!\right)}\underbrace{\left(\times{12}\times{12}\times{12}\ldots\times{12}\right)}_\text{403 times}\equiv\color{#D61F06}{\left(403!\right)}\times{{12}^{403}}\pmod{1000}\end{array}

Using same method above, we will determine the last three digits non zero of ( 403 ! ) \color{#D61F06}{\left(403!\right)} .

403 ! 10 80 ( 80 ! ) × ( 403 × 402 × 401 ) × 12 80 ( 80 ! ) × 406 × 12 80 ( m o d 1000 ) \begin{array}{c}&\dfrac{403!}{{10}^{80}}&\equiv\color{#D61F06}{\left(80!\right)}\times\left({403}\times{402}\times{401}\right)\times{{12}^{80}}\\&\equiv\color{#D61F06}{\left(80!\right)}\times{406}\times{{12}^{80}}\pmod{1000}\end{array}

And for 80 ! ~\color{#D61F06}{80!}

80 ! 10 16 ( 16 ! ) × 12 16 ( m o d 1000 ) \dfrac{80!}{{10}^{16}}\equiv\color{#D61F06}{\left(16!\right)}\times{{12}^{16}}\pmod{1000}

And the last for 16 ! ~\color{#D61F06}{16!}

16 ! 10 3 ( 3 ! ) × 16 × 12 3 96 × 12 3 ( m o d 1000 ) \dfrac{16!}{{10}^{3}}\equiv\color{#D61F06}{\left(3!\right)}\times{16}\times{{12}^{3}}\equiv96\times{{12}^{3}}\pmod{1000} .

Finally, we have

2015 ! 10 403 12 ( 403 + 80 + 16 + 3 ) × 406 × 96 12 502 × 976 4 502 × 3 502 × 976 ( m o d 1000 ) \begin{array}{c}&\dfrac{2015!}{{10}^{403}}&\equiv{12}^{(403+80+16+3)}\times{406}\times{96}\equiv{12}^{502}\times976\\&\equiv{4^{502}}\times{3^{502}}\times{976}\pmod{1000}\end{array} .

For simplicity, we will work with modulo 8 8 and 125 125 to use Euler's theorem. Now we have:

4 502 { 16 251 0 ( m o d 8 ) ( 4 ϕ ( 125 ) ) 5 × 4 2 16 ( m o d 125 ) 4^{502}\equiv\begin{cases}{16}^{251}\equiv0\pmod{8}\\\left(4^{\phi(125)}\right)^{5}\times{4^{2}}\equiv16\pmod{125}\end{cases}

and 3 502 { 9 251 1 ( m o d 8 ) ( 3 ϕ ( 125 ) ) 5 × 3 2 9 ( m o d 125 ) ~~3^{502}\equiv\begin{cases}9^{251}\equiv1\pmod{8}\\\left(3^{\phi(125)}\right)^{5}\times{3^{2}}\equiv9\pmod{125}\end{cases}

Note that ϕ ( 125 ) = ( 1 1 5 ) × 125 = 100 \phi(125)=\left(1-\dfrac{1}{5}\right)\times{125}=100

By using Chinese Reminder Theorem we shall get that 4 502 16 ( m o d 1000 ) 4^{502}\equiv16\pmod{1000}~~ and 3 502 9 ( m o d 1000 ) ~~3^{502}\equiv9\pmod{1000}

Hence,

2015 ! 10 403 4 502 × 3 502 × 976 16 × 9 × 976 140544 544 ( m o d 1000 ) \begin{array}{c}&\dfrac{2015!}{{10}^{403}}&\equiv{4}^{502}\times{3^{502}}\times{976}\equiv16\times{9}\times{976}\equiv140544\\&\equiv\boxed{\boxed{\boxed{\huge{544}}}}\pmod{1000}\end{array} .

Is there any faster quick formula/method ?

Syed Hamza Khalid - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...