What is Last Three Digit non zero of
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This solution is very very very long....May be, somebody will give other solution.
Let us write 2 0 1 5 ! on format like below:
2 0 1 5 ! = ( 5 × 1 0 × 1 5 × 2 0 … × 2 0 1 0 × 2 0 1 5 ) × ( 1 × 2 × 3 × 4 ) × ( 6 × 7 × 8 × 9 ) × … × ( 2 0 1 1 × 2 0 1 2 × 2 0 1 3 × 2 0 1 4 ) = ( 5 4 0 3 × 4 0 3 ! ) × ( 1 × 2 × 3 × 4 ) × ( 6 × 7 × 8 × 9 ) × … × ( 2 0 1 1 × 2 0 1 2 × 2 0 1 3 × 2 0 1 4 ) = ( 1 0 4 0 3 × 4 0 3 ! ) × 2 − 4 0 3 × ( 1 × 2 × 3 × 4 ) × ( 6 × 7 × 8 × 9 ) × … × ( 2 0 1 1 × 2 0 1 2 × 2 0 1 3 × 2 0 1 4 ) .
Let us observe all product of each black item in the bracket. We can see that all last three digits of the product is 2 4 . So, we can say that the last three digits of
1 0 4 0 3 2 0 1 5 ! ≡ ( 4 0 3 ! ) 403 times ( × 1 2 × 1 2 × 1 2 … × 1 2 ) ≡ ( 4 0 3 ! ) × 1 2 4 0 3 ( m o d 1 0 0 0 ) ≡ ( 4 0 3 ! ) × 2 − 4 0 3 403 times ( × 2 4 × 2 4 × 2 4 … × 2 4 )
Using same method above, we will determine the last three digits non zero of ( 4 0 3 ! ) .
1 0 8 0 4 0 3 ! ≡ ( 8 0 ! ) × 4 0 6 × 1 2 8 0 ( m o d 1 0 0 0 ) ≡ ( 8 0 ! ) × ( 4 0 3 × 4 0 2 × 4 0 1 ) × 1 2 8 0
And for 8 0 !
1 0 1 6 8 0 ! ≡ ( 1 6 ! ) × 1 2 1 6 ( m o d 1 0 0 0 )
And the last for 1 6 !
1 0 3 1 6 ! ≡ ( 3 ! ) × 1 6 × 1 2 3 ≡ 9 6 × 1 2 3 ( m o d 1 0 0 0 ) .
Finally, we have
1 0 4 0 3 2 0 1 5 ! ≡ 4 5 0 2 × 3 5 0 2 × 9 7 6 ( m o d 1 0 0 0 ) ≡ 1 2 ( 4 0 3 + 8 0 + 1 6 + 3 ) × 4 0 6 × 9 6 ≡ 1 2 5 0 2 × 9 7 6 .
For simplicity, we will work with modulo 8 and 1 2 5 to use Euler's theorem. Now we have:
4 5 0 2 ≡ { 1 6 2 5 1 ≡ 0 ( m o d 8 ) ( 4 ϕ ( 1 2 5 ) ) 5 × 4 2 ≡ 1 6 ( m o d 1 2 5 )
and 3 5 0 2 ≡ { 9 2 5 1 ≡ 1 ( m o d 8 ) ( 3 ϕ ( 1 2 5 ) ) 5 × 3 2 ≡ 9 ( m o d 1 2 5 )
Note that ϕ ( 1 2 5 ) = ( 1 − 5 1 ) × 1 2 5 = 1 0 0
By using Chinese Reminder Theorem we shall get that 4 5 0 2 ≡ 1 6 ( m o d 1 0 0 0 ) and 3 5 0 2 ≡ 9 ( m o d 1 0 0 0 )
Hence,
1 0 4 0 3 2 0 1 5 ! ≡ 5 4 4 ( m o d 1 0 0 0 ) ≡ 4 5 0 2 × 3 5 0 2 × 9 7 6 ≡ 1 6 × 9 × 9 7 6 ≡ 1 4 0 5 4 4 .