Last two digits

Find the last two digits of 1 7 28 17^{28} .


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

1 7 28 ( 10 + 7 ) 28 (mod 100) Only last two terms are indivisible by 100 28 10 7 27 + 7 28 (mod 100) 41 7 28 (mod 100) 41 4 9 14 (mod 100) 41 ( 50 1 ) 14 (mod 100) Only last term is indivisible by 100 41 ( 1 ) 14 (mod 100) 41 (mod 100) \begin{aligned} 17^{28} & \equiv \color{#3D99F6}{(10+7)^{28}} \text{ (mod 100)} & \small \color{#3D99F6}{\text{Only last two terms are indivisible by 100}} \\ & \equiv 28 \cdot 10 \cdot 7^{27} + 7^{28} \text{ (mod 100)} \\ & \equiv 41 \cdot 7^{28} \text{ (mod 100)} \\ & \equiv 41 \cdot 49^{14} \text{ (mod 100)} \\ & \equiv 41 \cdot \color{#3D99F6}{(50-1)^{14}} \text{ (mod 100)} & \small \color{#3D99F6}{\text{Only last term is indivisible by 100}} \\ & \equiv 41 \cdot \color{#3D99F6}{(-1)^{14}} \text{ (mod 100)} \\ & \equiv \boxed{41} \text{ (mod 100)} \end{aligned}

In the second step and third last step, have you expanded the binomial theorem and then removed the first 27 of the 29 terms because they are a factor of 1 0 2 10^2 ? Or is it a technique in modulus questions?

Other than that, brilliant solution! Upvoted

Mahdi Raza - 8 months, 2 weeks ago

Log in to reply

The first 27 27 terms are a multiple of 1 0 2 10^2 , hence leave a remainder of 0 0 when divided by 100 100 .

Chew-Seong Cheong - 8 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...