Last three digits

What is the last three digits of 201 7 2019 ? 2017^{2019}?


The answer is 153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Oct 15, 2017

Taking 201 7 2019 m o d ( 100 ) 2017^{2019}\mod(100) for last three digits.

201 7 2019 = 201 7 ϕ ( 100 ) m o d ( 100 ) c c c c c c c since gcd ( 2017 , 100 ) = 1 , we can use Euler’s Theorem 201 7 40 m o d ( 100 ) 201 7 19 m o d ( 100 ) 201 7 19 m o d ( 100 ) 1 7 19 m o d ( 100 ) 17 ( 1 7 2 ) 9 m o d ( 100 ) 17 ( 289 ) 9 m o d ( 100 ) 17 ( 200 + 89 ) 9 m o d ( 100 ) 17 ( 89 ) 9 m o d ( 100 ) 17 × 89 ( 100 11 ) 8 m o d ( 100 ) 17 × 89 ( 11 ) 8 m o d ( 100 ) 17 × 89 ( 10 + 1 ) 8 m o d ( 100 ) 1513 ( 10 + 1 ) 8 m o d ( 100 ) 1513 ( C ( 8 , 7 ) 10 + 1 ) m o d ( 100 ) 1513 ( 10 × 8 + 1 ) m o d ( 100 ) 1513 × 81 m o d ( 100 ) ( 122400 + 153 ) m o d ( 100 ) 153 m o d ( 100 ) \begin{aligned} 2017^{2019} & = 2017^{\phi(100)}\mod(100) \phantom{ccccccc}\color{#3D99F6}\text{since }\gcd(2017,100)=1\text{, we can use Euler's Theorem}\\& \equiv 2017^{40}\mod(100) \\ & \equiv 2017^{19}\mod(100) \\ & \equiv 2017^{19}\mod(100) \\ & \equiv 17^{19}\mod(100) \\ & \equiv 17(17^2)^9\mod(100) \\ & \equiv 17(289)^9\mod(100) \\ & \equiv 17(200+89)^9\mod(100) \\ &\equiv 17(89)^9\mod(100) \\ & \equiv 17\times 89 (100-11)^8\mod(100) \\ & \equiv 17\times 89 (11)^8\mod(100) \\ & \equiv 17\times 89(10+1)^8\mod(100) \\ & \equiv 1513 (10+1)^8 \mod(100) \\ & \equiv 1513 \left(C(8,7)10+1\right)\mod(100) \\ & \equiv 1513(10\times 8+1)\mod(100) \\ & \equiv 1513\times 81 \mod(100) \\ & \equiv (122400+153)\mod(100) \\ & \equiv 153 \mod(100)\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...