∫ 0 1 x 2 0 1 7 ( 1 − x ) 2 0 1 8 d x = γ ! α ! β !
The equation above holds true for integers α , β , and γ , where α < β . Submit α − β + γ − 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Direct consequence of Beta Function hence answer is simply β ( x , y ) = Γ ( x + y ) Γ ( x ) Γ ( y ) = Γ ( 4 0 3 7 ) Γ ( 2 0 1 8 ) Γ ( 2 0 1 9 ) = 4 0 3 6 ! 2 0 1 7 ! 2 0 1 8 ! ; α − β + γ − 1 = 2 0 1 7 − 2 0 1 8 + 4 0 3 6 − 1 = 4 0 3 4
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Beta Function
I = ∫ 0 1 x 2 0 1 7 ( 1 − x ) 2 0 1 8 d x = B ( 2 0 1 8 , 2 0 1 9 ) = Γ ( 4 0 3 7 ) Γ ( 2 0 1 8 ) Γ ( 2 0 1 9 ) = 4 0 3 6 ! 2 0 1 7 ! 2 0 1 8 ! Since B ( m , n ) = ∫ 0 1 u m − 1 ( 1 − u ) n − 1 d u where B ( m , n ) is the beta function. Since B ( m , n ) = Γ ( m + n ) Γ ( m ) Γ ( n ) where gamma function Γ ( n ) = ( n − 1 ) !
Therefore, α − β + γ − 1 = 2 0 1 7 − 2 0 1 8 + 2 0 3 6 − 1 = 4 0 3 4 .