Last Tribute to 2017

Calculus Level 4

0 1 x 2017 ( 1 x ) 2018 d x = α ! β ! γ ! \large\int_0^1 x^{2017}(1-x)^{2018} dx = \dfrac{\alpha ! \beta !}{\gamma !}

The equation above holds true for integers α \alpha , β \beta , and γ \gamma , where α < β \alpha < \beta . Submit α β + γ 1 \alpha - \beta + \gamma - 1 .


The answer is 4034.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 17, 2018

Relevant wiki: Beta Function

I = 0 1 x 2017 ( 1 x ) 2018 d x Since B ( m , n ) = 0 1 u m 1 ( 1 u ) n 1 d u = B ( 2018 , 2019 ) where B ( m , n ) is the beta function. = Γ ( 2018 ) Γ ( 2019 ) Γ ( 4037 ) Since B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) = 2017 ! 2018 ! 4036 ! where gamma function Γ ( n ) = ( n 1 ) ! \begin{aligned} I & = \int_0^1 x^{2017}(1-x)^{2018} dx & \small \color{#3D99F6} \text{Since }B(m,n) = \int_0^1 u^{m-1}(1-u)^{n-1} du \\ & = B(2018, 2019) & \small \color{#3D99F6} \text{where }B(m,n)\text{ is the beta function.} \\ & = \frac {\Gamma (2018) \Gamma(2019)}{\Gamma (4037)} & \small \color{#3D99F6} \text{Since }B(m,n) = \frac {\Gamma(m)\Gamma(n)}{\Gamma(m+n)} \\ & = \frac {2017! 2018!}{4036!} & \small \color{#3D99F6} \text{where gamma function }\Gamma(n) = (n-1)! \end{aligned}

Therefore, α β + γ 1 = 2017 2018 + 2036 1 = 4034 \alpha - \beta + \gamma - 1 = 2017 - 2018 + 2036 - 1 = \boxed{4034} .

Ayon Ghosh
Dec 25, 2017

Direct consequence of Beta Function hence answer is simply β ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) = Γ ( 2018 ) Γ ( 2019 ) Γ ( 4037 ) = 2017 ! 2018 ! 4036 ! ; α β + γ 1 = 2017 2018 + 4036 1 = 4034 \beta(x,y) = \dfrac{\Gamma (x) \Gamma(y)}{\Gamma(x+y)} = \dfrac{\Gamma(2018)\Gamma(2019)}{\Gamma(4037)} = \dfrac{2017! 2018!}{4036!} ; \alpha - \beta + \gamma -1 = 2017 - 2018 + 4036 -1 = \large\boxed{4034}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...