Last Two Digits?

Algebra Level 2

What is the last two digits of 201 8 2018 \large 2018^{2018}


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jordan Cahn
Oct 30, 2018

The last two digits of 201 8 2018 2018^{2018} will be the same as the last two digits of 1 8 2018 18^{2018} . Consider the last two digits of the first few powers of 18 18 : 1 8 2 24 m o d 100 1 8 3 32 m o d 100 1 8 4 76 m o d 100 1 8 5 68 m o d 100 1 8 6 24 m o d 100 \begin{aligned} 18^2 &\equiv 24 \mod 100 \\ 18^3 &\equiv 32 \mod 100 \\ 18^4 &\equiv 76 \mod 100 \\ 18^5 &\equiv 68 \mod 100 \\ 18^6 &\equiv 24 \mod 100 \end{aligned} Thus the last two digits of 1 8 n 18^n repeat with a period of 4 4 . In other words, 1 8 m 1 8 n m o d 100 18^m \equiv 18^n \bmod 100 if and only if m n m o d 4 m\equiv n \bmod 4 (for n , m 2 n,m\geq 2 ). Since 2018 2 m o d 4 2018\equiv 2\bmod 4 , the last two digits of 1 8 2018 18^{2018} , and therefore 201 8 2018 2018^{2018} will be 24 \boxed{24} .

Chew-Seong Cheong
Oct 31, 2018

Let N = 201 8 2018 N=2018^{2018} . We need to find N m o d 100 N \bmod 100 . Since gcd ( 2018 , 100 ) 1 \gcd(2018, 100) \ne 1 , we consider the factors 4 and 25 of 100 separately using Chinese remainder theorem .

Factor 4: N 0 (mod 4) N \equiv 0 \text{ (mod 4)}

Factor 25: Since gcd ( 2018 , 25 ) = 1 \gcd(2018, 25) = 1 , we can apply Euler's theorem and note that Euler's totient function ϕ ( 25 ) = 20 \phi(25) = 20 .

N 201 8 2018 m o d ϕ ( 25 ) (mod 25) 201 8 2018 m o d 20 (mod 25) 201 8 18 (mod 25) ( 2000 + 18 ) 18 (mod 25) 1 8 18 (mod 25) \begin{aligned} N & \equiv 2018^{2018 \bmod \phi(25)} \text{ (mod 25)} \\ & \equiv 2018^{2018 \bmod 20} \text{ (mod 25)} \\ & \equiv 2018^{18} \text{ (mod 25)} \\ & \equiv (2000+18)^{18} \text{ (mod 25)} \\ & \equiv 18^{18} \text{ (mod 25)} \end{aligned}

Now consider,

1 8 20 1 8 20 m o d ϕ ( 25 ) 1 8 20 m o d 20 1 8 0 1 (mod 25) 1 8 2 1 8 18 1 (mod 25) 4 81 1 8 18 1 (mod 25) 4 6 1 8 18 1 (mod 25) 24 1 8 18 1 (mod 25) 1 8 18 1 (mod 25) 1 8 18 1 24 (mod 25) \begin{aligned} 18^{20} & \equiv 18^{20 \bmod \phi(25)} \equiv 18^{20 \bmod 20} \equiv 18^0 \equiv 1 \text{ (mod 25)} \\ 18^2\cdot 18^{18} & \equiv 1 \text{ (mod 25)} \\ 4 \cdot 81\cdot 18^{18} & \equiv 1 \text{ (mod 25)} \\ 4 \cdot 6 \cdot 18^{18} & \equiv 1 \text{ (mod 25)} \\ 24 \cdot 18^{18} & \equiv 1 \text{ (mod 25)} \\ -18^{18} & \equiv 1 \text{ (mod 25)} \\ 18^{18} & \equiv -1 \equiv 24 \text{ (mod 25)} \end{aligned}

Since 24 0 (mod 4) 24 \equiv 0 \text{ (mod 4)} , implying that N 24 (mod 100) N \equiv \boxed{24} \text{ (mod 100)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...