Last Two Digits

What is the last two digits of

3 3 100 ? \Large 3^{3^{100}} ?

3 63 83 43 23

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Kushal Bose
Dec 7, 2016

As from Euler's Function ϕ ( 100 ) = 40 \phi(100)=40

So 3 ϕ ( 100 ) 1 ( m o d 100 ) 3 40 1 ( m o d 100 ) 3^{\phi(100)} \equiv 1 \pmod {100} \\ \implies 3^{40} \equiv 1 \pmod {100}

Now we need to find how many 4 0 s 40's are there in 3 100 3^{100} i.e. 3 100 ? ( m o d 40 ) 3^{100} \equiv ? \pmod {40}

Now 3 100 1 ( m o d 8 ) 3^{100} \equiv 1 \pmod{8} and 3 100 1 ( m o d 5 ) 3^{100} \equiv 1 \pmod{5} (It can be easily found by using binomial exapansion.)

Then 3 100 1 ( m o d 40 ) 3^{100} \equiv 1 \pmod {40} .Here 3 100 = 40 k + 1 3^{100} = 40 k +1 .Putting this we get:

3 3 100 = 3 40 k + 1 = 3 40 k . 3 1 k . 3 ( m o d 100 ) 3^{3^{100}}=3^{40 k+1} = 3^{40k}.3 \equiv 1^k.3 \pmod {100} .

3 3 100 3 ( m o d 100 ) 3^{3^{100}} \equiv 3 \pmod {100}

Nice solution. That is exactly how I solved it.

Hana Wehbi - 4 years, 6 months ago

Relevant wiki: Euler's Theorem

We need to find 3 3 100 mod 100 3^{3^{100}} \text{ mod 100} .

3 3 100 3 3 100 mod ϕ ( 100 ) (mod 100) Since gcd ( 3 , 100 ) = 1 , Euler’s theorem applies. 3 3 100 mod 40 (mod 100) Euler’s totient function ϕ ( 100 ) = 40 3 3 100 mod ϕ ( 40 ) mod 40 (mod 100) Since gcd ( 3 , 40 ) = 1 , Euler’s theorem applies. 3 3 100 mod 16 mod 40 (mod 100) Euler’s totient function ϕ ( 40 ) = 16 3 3 4 mod 40 (mod 100) 3 81 mod 40 (mod 100) 3 1 3 (mod 100) \begin{aligned} 3^{3^{100}} & \equiv 3^{3^{100} \text{ mod }\color{#3D99F6}\phi (100)} \text{ (mod 100)} & \small \color{#3D99F6} \text{Since } \gcd (3, 100) = 1, \text{ Euler's theorem applies.} \\ & \equiv 3^{3^{100} \text{ mod }\color{#3D99F6} 40} \text{ (mod 100)} & \small \color{#3D99F6} \text{Euler's totient function } \phi(100) = 40 \\ & \equiv 3^{3^{100 \text{ mod }\color{#3D99F6}\phi (40)}\text{ mod 40}} \text{ (mod 100)} & \small \color{#3D99F6} \text{Since } \gcd (3, 40) = 1, \text{ Euler's theorem applies.} \\ & \equiv 3^{3^{100 \text{ mod }\color{#3D99F6}16} \text{ mod 40}} \text{ (mod 100)} & \small \color{#3D99F6} \text{Euler's totient function } \phi(40) = 16 \\ & \equiv 3^{3^4 \text{ mod 40}} \text{ (mod 100)} \\ & \equiv 3^{81 \text{ mod 40}} \text{ (mod 100)} \\ & \equiv 3^1 \equiv \boxed{3} \text{ (mod 100)} \end{aligned}

Nice solution. I always look forward for your written solution(s) to my problems.

Hana Wehbi - 4 years, 6 months ago
梦 叶
Dec 7, 2016

Set p = 101, 3^100 congruent to 1 mod 101, 3^1 mod 101 gives us 3.

That is an interesting idea.

Hana Wehbi - 4 years, 6 months ago
Michael Huang
Dec 7, 2016

Observe that if a a is relatively prime to 2 2 = 4 2^2 = 4 and 25 25 (noting that 100 = 25 4 100 = 25 \cdot 4 ) a 20 1 m o d 25 a 2 1 m o d 4 \begin{array}{rl} a^{20} &\equiv 1 \bmod 25\\ a^{2} &\equiv 1 \bmod 4 \end{array} In this case, since a 20 1 m o d 4 a^{20} \equiv 1 \bmod 4 also, by Chinese Remainder Theorem , a 20 1 m o d 100 a^{20} \equiv 1 \bmod 100 which leads us to evaluate 3 100 m o d 20 3^{100} \bmod 20 .


Evaluating 3 100 m o d 20 3^{100} \bmod 20

Observe that 20 = 2 2 5 20 = 2^2 \cdot 5 . If b b is relatively prime to 2 2 = 4 2^2 = 4 and 5 5 , b 2 1 m o d 4 b 4 1 m o d 5 \begin{array}{rl} b^2 &\equiv 1 \bmod 4\\ b^4 &\equiv 1 \bmod 5 \end{array} Chinese Remainder Theorem shows that b 4 1 m o d 20 b^4 \equiv 1 \bmod 20 . Therefore, 3 100 ( 3 25 ) 4 m o d 20 1 m o d 20 \begin{array}{rl} 3^{100} &\equiv \left(3^{25}\right)^4 \bmod 20\\ &\equiv 1 \bmod 20 \end{array} which is the exponent of 3 3 .


Answer

Thus, we have 3 \boxed{3} as the answer.

Very neat solution!

For your first section (in your solution), it's easier to show that the minimum positive integer of m m satisfying a m 1 ( m o d 100 ) a^m\equiv 1 \pmod{100} (of 20) is by using Carmichael's lambda function . That is λ ( 100 ) = λ ( 2 2 5 2 ) = lcm ( λ ( 2 2 ) , λ ( 5 2 ) ) = lcm ( 1 2 ϕ ( 2 2 ) , ϕ ( 5 2 ) ) = lcm ( 2 , 20 ) = 20 . \lambda (100) = \lambda(2^2 \cdot 5^2 ) = \text{lcm}(\lambda(2^2), \lambda(5^2) ) = \text{lcm} \left(\dfrac12 \phi(2^2), \phi(5^2) \right) =\text{lcm} (2, 20) = \boxed{20} .

Pi Han Goh - 4 years, 6 months ago

Nice and explicit solution.

Hana Wehbi - 4 years, 6 months ago
Hana Wehbi
Dec 7, 2016

The last two digits are 03 which is the same as 3. I will provide a complete solution later on.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...