Law of Cosines

Geometry Level 5

Suppose that the angles of A B C \triangle ABC satisfy cos ( 3 A ) + cos ( 3 B ) + cos ( 3 C ) = 1. \cos(3A)+\cos(3B)+\cos(3C)=1. Two sides of the triangle have lengths 10 and 13. There is a positive integer m m so that the maximum possible length for the remaining side of A B C \triangle ABC is m . \sqrt{m}. Find m . m.


The answer is 399.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Sep 13, 2015

c y c cos 3 A = 1 4 c y c sin 3 A 2 1 = 1 4 c y c sin 3 A 2 c y c sin 3 A 2 = 0 \Large{\sum_{cyc} \cos 3A = 1 - 4\prod_{cyc} \sin \dfrac{3A}{2} \\ 1 = 1 - 4\prod_{cyc} \sin \dfrac{3A}{2} \\ \Rightarrow \prod_{cyc} \sin \dfrac{3A}{2} = 0}

This means one of the sines of 3 A 2 , 3 B 2 , 3 C 2 \dfrac{3A}{2},\dfrac{3B}{2},\dfrac{3C}{2} is 0 0 .

Suppose sin 3 A 2 = 0 3 A 2 = 180 sin ( 180 ) = 0 3 A = 360 A = 120 \sin \dfrac{3A}{2}=0 \Rightarrow \dfrac{3A}{2} = 180 \ \because \sin(180)=0 \Rightarrow 3A = 360 \Rightarrow A=120

Thus , the longest side is the one opposite the obtuse angle i.e 120 120 .

Using cosine rule ,

( m ) 2 = 1 0 2 + 1 3 2 2 ( 10 ) ( 13 ) cos 120 m = 1 0 2 + 1 3 2 2 ( 10 ) ( 13 ) ( 1 2 ) m = 100 + 169 + 130 = 399 \Large{(\sqrt{m})^2=10^2 + 13^2 -2(10)(13)\cos 120 \\ \Rightarrow m=10^2 + 13^2 -2(10)(13)\left(\dfrac{-1}{2}\right) \\ \Rightarrow m=100+169+130 = \boxed{399}}

Johanz Piedad
Sep 13, 2015

As above, we can see that cos 3 A + cos 3 B cos ( 3 A + 3 B ) = 1 \cos3A+\cos3B-\cos(3A+3B)=1

Expanding, we get

cos 3 A + cos 3 B cos 3 A cos 3 B + sin 3 A sin 3 B = 1 \cos3A+\cos3B-\cos3A\cos3B+\sin3A\sin3B=1

cos 3 A cos 3 B cos 3 A cos 3 B + 1 = sin 3 A sin 3 B \cos3A\cos3B-\cos3A-\cos3B+1=\sin3A\sin3B

( cos 3 A 1 ) ( cos 3 B 1 ) = sin 3 A sin 3 B (\cos3A-1)(\cos3B-1)=\sin3A\sin3B

cos 3 A 1 sin 3 A cos 3 B 1 sin 3 B = 1 \frac{\cos3A-1}{\sin3A}\cdot\frac{\cos3B-1}{\sin3B}=1

tan 3 A 2 tan 3 B 2 = 1 \tan{\frac{3A}{2}}\tan{\frac{3B}{2}}=1

Note that tan x = 1 tan ( 90 x ) \tan{x}=\frac{1}{\tan(90-x)} , or tan x tan ( 90 x ) = 1 \tan{x}\tan(90-x)=1

Thus 3 A 2 + 3 B 2 = 90 \frac{3A}{2}+\frac{3B}{2}=90 , or A + B = 60 A+B=60 .

Now we know that C = 120 C=120 , so we can just use Law or Cosines to get 399 \boxed{399}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...