Law of logarithm

Algebra Level 2

n = 1 99 log 10 ( n + 1 n ) = ? \large \sum _{ n=1 }^{ 99 }{ \log_{10} { \left( \frac { n+1 }{ n } \right) } } = \, ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Feb 6, 2016

n = 1 99 log 10 ( n + 1 n ) = log 10 n = 1 99 n + 1 n \large \sum _{ n=1 }^{ 99 }{ \log_{10} { ( \frac { n+1 }{ n } ) } }\\ =\log_{10} \prod_{n=1}^{99}\dfrac{n+1}{n} = log 10 1 × × . . . × 100 9̸9 \large =\log_{10} \dfrac{\not 2}{1}\times\dfrac{\not 3}{\not 2}\times\dfrac{\not 4}{\not 3}...\times\dfrac{100}{\not 99} = log 10 100 = 2 \large =\log_{10} 100=\huge\boxed{\color{#007fff}{2}}

N i c e ( + 1 ) \Large\color{#3D99F6}{Nice ~ (+1)}

Mateus Gomes - 5 years, 4 months ago

Log in to reply

T h a n k s ! ! \huge\color{#EC7300}{\mathbb{Thanks!!}}

Rishabh Jain - 5 years, 4 months ago
Mateus Gomes
Feb 6, 2016

n = 1 99 log ( n + 1 n ) = l o g ( n + 1 ) l o g ( n ) \sum _{ n=1 }^{ 99 }{ \log { \left( \frac { n+1 }{ n } \right) } }= log(n+1)-log(n) ( Telescopic serie ) ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ (\color{#302B94}{\small{ \text{Telescopic serie}}}) = l o g ( 2 ) l o g ( 1 ) + l o g ( 3 ) l o g ( 2 ) + l o g ( 4 ) l o g ( 3 ) . . . l o g ( 100 ) l o g ( 99 ) =log(2)-log(1)+log(3)-log(2)+log(4)-log(3)...log(100)-log(99) = l o g ( 100 ) l o g ( 1 ) = l o g ( 10 2 ) l o g ( 1 ) = 2 l o g ( 10 ) l o g ( 1 ) = 2 =log(100)-log(1)=log({10}^{2})-log(1)=2log(10)-log(1)=\Large{\boxed{\color{#3D99F6}{2}}}

Nice Solution!!

Lais Gomes - 5 years, 4 months ago
Aditya Kushwaha
Feb 7, 2016

Use telescopic rule..😁

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...