Lawrence's sum

Algebra Level 4

If the sum

n = 1 2111 n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! \sum_{n=1}^{2111} \frac{n+2}{n! + (n+1)! + (n+2)!}

is written as 1 2 1 a ! \frac{1}{2} - \frac{1}{a!} , what are the last three digits of a a ?

This problem is posed by Lawrence L .

Details and assumptions

The last three digits of 1023 1023 is 023 023 . You may enter your answer as 023 023 or 23 23 .


The answer is 113.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

João Baptista
Nov 17, 2013

Let P ( n ) = n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! P(n) = \dfrac{n+2}{n! + (n+1)! + (n+2)!} . We can use some algebra to rework this expression: n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! = n + 2 n ! + n ! ( n + 1 ) + n ! ( n + 1 ) ( n + 2 ) = \dfrac{n+2}{n! + (n+1)! + (n+2)!} = \dfrac{n+2}{n! + n!(n+1) + n!(n+1)(n+2)} =

= n + 2 n ! ( 1 + ( n + 1 ) + ( n + 1 ) ( n + 2 ) ) = n + 2 n ! ( ( n + 2 ) + ( n + 1 ) ( n + 2 ) ) = = \dfrac{n+2}{n!(1 + (n+1) + (n+1)(n+2))} = \dfrac{n+2}{n!((n+2) + (n+1)(n+2))} =

= n + 2 n ! ( n + 2 ) 2 = 1 n ! ( n + 2 ) = n + 1 ( n + 2 ) ! = n + 2 ( n + 2 ) ! 1 ( n + 2 ) ! = = \dfrac{n+2}{n!(n+2)^2} = \dfrac 1{n!(n+2)} = \dfrac{n+1}{(n+2)!} = \dfrac{n+2}{(n+2)!} - \dfrac1{(n+2)!} =

= 1 ( n + 1 ) ! 1 ( n + 2 ) ! = \dfrac1{(n+1)!} - \dfrac1{(n+2)!}

When the sum on the question is extended, we have: P ( 1 ) + P ( 2 ) + P ( 3 ) + + P ( 2111 ) = P(1) + P(2) + P(3) + \dots + P(2111) = = 1 2 1 3 ! + 1 3 ! 1 4 ! + 1 4 ! 1 2112 ! + 1 2112 ! 1 2113 ! = \dfrac12 - \dfrac1{3!} + \dfrac1{3!} - \dfrac1{4!} + \dfrac1{4!} - \dots - \dfrac1{2112!} + \dfrac1{2112!} - \dfrac1{2113!}

Using the telescoping sum technique, we have: 1 2 1 2113 ! \frac12 - \frac1{2113!} . Then, a = 2113 a = 2113 and the answer is 113 113 .

Darn, I was so close to getting to the answer! Great job!

Louis Kirkley - 7 years, 6 months ago

Log in to reply

i know that feel

math man - 6 years, 8 months ago

very nice!!!

Alia Al-Alavi - 7 years, 6 months ago

Excellent solution.

A Former Brilliant Member - 7 years, 6 months ago

I used this same method!

Kishore S. Shenoy - 5 years, 9 months ago

Used the exact same method! Nice solution.

Akshat Jain - 7 years, 6 months ago

Didn't think of that. Excellent!

Vincent Tandya - 7 years, 6 months ago
Ruchir Mehta
Jan 13, 2014

In a problem like this, it really helps if the final answer form is given. In this case, it is 1 2 1 a ! \frac{1}{2}-\frac{1}{a!} . This means that this is a telescopic series. So, we have to simplify the given expression as a difference of two consecutive terms. This was the motivation for my approach.

We have n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! \frac{n+2}{n!+(n+1)!+(n+2)!} . Consider the denominator. We will simply it first.

n ! + ( n + 1 ) ! + ( n + 2 ) ! = n ! × [ 1 + ( n + 1 ) + ( n + 1 ) ( n + 2 ) ] = n ! ( 1 + n + 1 + n 2 + 3 n + 2 ) n!+(n+1)!+(n+2)!= n!\times [1+(n+1)+(n+1)(n+2)]=n!(1+n+1+n^2+3n+2)

n ! + ( n + 1 ) ! + ( n + 2 ) ! = n ! × ( 1 + n + 1 + n 2 + 3 n + 2 ) = n ! × ( n 2 + 4 n + 4 ) = n ! × ( n + 2 ) 2 \Rightarrow n!+(n+1)!+(n+2)!=n!\times (1+n+1+n^2+3n+2)=n!\times (n^2+4n+4)=n!\times(n+2)^2

Hence, our expression n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! = n + 2 n ! × ( n + 2 ) 2 = 1 n ! × ( n + 2 ) \frac{n+2}{n!+(n+1)!+(n+2)!}=\frac{n+2}{n!\times(n+2)^2}=\frac{1}{n!\times(n+2)}

1 n ! × ( n + 2 ) = n + 1 n ! ( n + 1 ) ( n + 2 ) = n + 1 ( n + 2 ) ! = 1 ( n + 1 ) ! 1 ( n + 2 ) ! \Rightarrow \frac{1}{n!\times(n+2)}=\frac {n+1}{n!(n+1)(n+2)}=\frac{n+1}{(n+2)!}=\frac{1}{(n+1)!}-\frac{1}{(n+2)!}

So we have n = 1 2111 n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! = n = 1 2111 [ 1 ( n + 1 ) ! 1 ( n + 2 ) ! ] \displaystyle \sum_{n=1}^{2111}\frac{n+2}{n!+(n+1)!+(n+2)!}=\displaystyle \sum_{n=1}^{2111}[\frac{1}{(n+1)!}-\frac{1}{(n+2)!}]

Plugging in values of n n gives us

n = 1 2111 [ 1 ( n + 1 ) ! 1 ( n + 2 ) ! ] = ( 1 2 ! 1 3 ! ) + ( 1 3 ! 1 4 ! ) . . . + ( 1 2112 ! 1 2113 ! ) \displaystyle \sum_{n=1}^{2111}[\frac{1}{(n+1)!}-\frac{1}{(n+2)!}]=(\frac{1}{2!}-\frac{1}{3!})+(\frac{1}{3!}-\frac{1}{4!})...+(\frac{1}{2112!}-\frac{1}{2113!})

As is evident, all consecutive terms (other than the first and the last terms) get cancelled out.

So n = 1 2111 n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! = 1 2 ! 1 2113 ! = 1 2 ! 1 a ! a = 2113 \displaystyle \sum_{n=1}^{2111}\frac{n+2}{n!+(n+1)!+(n+2)!}=\frac{1}{2!}-\frac{1}{2113!}=\frac{1}{2!}-\frac{1}{a!}\Rightarrow a=2113

So the answer is 113 \boxed{113}

this is great

hriday saikia - 7 years, 2 months ago
Kishlaya Jaiswal
Nov 18, 2013

First, we would try to simplify the k t h k^{th} term of the sequence so that we break it into the difference of two terms, such that we could easily sum of the series.

Now take k ! k! common from the denominator, we have -

k + 2 k ! × 1 1 + ( k + 1 ) + ( k + 1 ) ( k + 2 ) \frac{k+2}{k!}\times\frac{1}{1+(k+1)+(k+1)(k+2)}

= k + 2 k ! × 1 ( k + 2 ) 2 =\frac{k+2}{k!}\times\frac{1}{(k+2)^2}

= 1 k ! × ( k + 2 ) =\frac{1}{k!\times(k+2)}

Now multiplying the numerator and denominator by k + 1 k+1 gives us - k + 1 ( k + 2 ) ! \frac{k+1}{(k+2)!}

which can be written as - k + 2 ( k + 2 ) ! 1 ( k + 2 ) ! 1 ( k + 1 ) ! 1 ( k + 2 ) ! \frac{k+2}{(k+2)!}-\frac{1}{(k+2)!} \Rightarrow \frac{1}{(k+1)!}-\frac{1}{(k+2)!}

Now we just need to sum the series -

k = 1 2111 1 ( k + 1 ) ! 1 ( k + 2 ) ! \sum_{k=1}^{2111} \frac{1}{(k+1)!}-\frac{1}{(k+2)!}

= ( 1 2 ! 1 3 ! ) + ( 1 3 ! 1 4 ! ) + + ( 1 2112 ! 1 2113 ! ) =\bigg(\frac{1}{2!}-\frac{1}{3!}\bigg)+\bigg(\frac{1}{3!}-\frac{1}{4!}\bigg)+ \ldots +\bigg(\frac{1}{2112!}-\frac{1}{2113!}\bigg)

= 1 2 ! 1 2113 ! =\frac{1}{2!}-\frac{1}{2113!}

Hence a = 2113 a=2113 . So the last three digits of a a would be 113 \boxed{113}

Rajiv Movva
Nov 17, 2013

The approach is to try small cases. If we let the upper limit of summation be k k , then we have k = 1 = 1 3 = 1 2 1 3 ! k = 1 = \dfrac{1}{3} = \dfrac{1}{2} - \dfrac{1}{3!} k = 2 = 1 3 + 1 8 = 11 24 = 1 2 1 4 ! k = 2 = \dfrac{1}{3} + \dfrac{1}{8} = \dfrac{11}{24} = \dfrac{1}{2} - \dfrac{1}{4!} k = 3 = 1 3 + 1 8 + 1 30 = 59 120 = 1 2 1 5 ! k = 3 = \dfrac{1}{3} + \dfrac{1}{8} + \dfrac{1}{30} = \dfrac{59}{120} = \dfrac{1}{2} - \dfrac{1}{5!} Clearly, there is a pattern: a = k + 2 a = k+2 . We can prove this by induction. Thus, our answer is 2111 + 2 = 2113 113 2111 + 2 = 2113 \Rightarrow \boxed{113} .

Can you write out how to "prove this by induction"?

Calvin Lin Staff - 7 years, 6 months ago

nice approach. Congratulations.

Niranjan Khanderia - 6 years, 10 months ago
Jatin Yadav
Jan 24, 2014

Checking the denominator:

n ! + ( n + 1 ) ! + ( n + 2 ) ! = n ! ( 1 + n + 1 + ( n + ! ) ( n + 2 ) n! + (n+1)! + (n+2)! = n!(1 + n+1 + (n+!)(n+2)

= n ! ( n + 2 ) ( 1 + n + 1 ) = n ! ( n + 2 ) 2 n!(n+2)(1 + n+ 1) = n!(n+2)^2

Now , n + 2 n ! ( n + 2 ) 2 = 1 n ! ( n + 2 ) \frac{n+2}{n!(n+2)^2} = \frac{1}{n!(n+2)}

Multiply and divide by n + 1 n+1 to get

n + 1 ( n + 2 ) ! = ( n + 2 ) 1 ( n + 2 ) ! = 1 ( n + 1 ) ! 1 ( n + 2 ) ! \frac{n+1}{(n+2)!} = \frac{(n+2) - 1}{(n+2)!} = \frac{1}{(n+1)!} - \frac{1}{(n+2)!}

Clearly, applying summation, the sum telescopes to 1 2 ! 1 2113 ! \frac{1}{2!} - \frac{1}{2113!}

Hence the answer is 2 113 2\fbox{113}

Nishant Sharma
Jan 6, 2014

n ! + ( n + 1 ) ! + ( n + 2 ) ! = n ! ( 1 + ( n + 1 ) + ( n + 1 ) ( n + 2 ) = n ! ( n + 2 ) 2 n!+(n+1)!+(n+2)!=n!\big(1+(n+1)+(n+1)(n+2)=n!(n+2)^2 .

So n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! = 1 n ! ( n + 2 ) = n + 1 ( n + 2 ) ! = ( n + 2 ) 1 ( n + 2 ) ! = 1 ( n + 1 ) ! 1 ( n + 2 ) ! \displaystyle\frac{n+2}{n!+(n+1)!+(n+2)!}=\frac{1}{n!(n+2)}=\frac{n+1}{(n+2)!}=\frac{(n+2)-1}{(n+2)!}=\frac{1}{(n+1)!}-\frac{1}{(n+2)!} . This series telescopes.

Now n = 1 2111 1 ( n + 1 ) ! 1 ( n + 2 ) ! = 1 2 ! 1 2113 ! = 1 2 ! 1 a ! \sum_{n=1}^{2111} \displaystyle\frac{1}{(n+1)!}-\frac{1}{(n+2)!}=\frac{1}{2!}-\frac{1}{2113!}=\frac{1}{2!}-\frac{1}{a!} .

So comparing last three digits are 113 \boxed{113} .

Don't know how to make limits appear directly below \sum .

Nishant Sharma - 7 years, 5 months ago

Log in to reply

Use \sum\limits_{lower limit}^{upper limit} instead of \sum_{lower limit}^{upper limit} .

Sreejato Bhattacharya - 7 years, 4 months ago

Log in to reply

\displaystyle \sum_{n=1}^{2011} f(n) yields n = 1 2011 f ( n ) \displaystyle \sum_{n=1}^{2011} f(n)

jatin yadav - 7 years, 4 months ago

Mine is quite same!

jatin yadav - 7 years, 4 months ago
Mostafa Samir
Nov 21, 2013

Using the fact that n ! = n ( n 1 ) ! n! = n(n-1)! , we can write the sum as :

S = n = 1 2111 n + 2 n ! + ( n + 1 ) n ! + ( n + 2 ) ( n + 1 ) n ! = n = 1 2111 n + 2 n ! ( 1 + ( n + 1 ) + ( n + 1 ) ( n + 2 ) ) = n = 1 2111 n + 2 n ! ( ( n + 2 ) + ( n + 1 ) ( n + 2 ) ) = n = 1 2111 n + 2 n ! ( n + 2 ) ( 1 + n + 1 ) = n = 1 2111 1 n ! ( n + 2 ) S = \displaystyle \sum_{n=1}^{2111} \frac{n+2}{n! + (n+1)n! + (n+2)(n+1)n!}\\ = \displaystyle \sum_{n=1}^{2111} \frac{n+2}{n!(1 + (n+1) + (n+1)(n+2))} \\= \displaystyle \sum_{n=1}^{2111} \frac{n+2}{n!((n + 2) + (n+1)(n+2))} = \displaystyle \sum_{n=1}^{2111} \frac{n+2}{n!(n + 2)(1 + n+1)} \\ =\displaystyle \sum_{n=1}^{2111} \frac{1}{n!(n+2)}

Using some algebraic manipulations , we can write :

S = n = 1 2111 1 n ! ( n + 2 ) = n = 1 2111 n + 1 n ! ( n + 1 ) ( n + 2 ) = n = 1 2111 n + 1 ( n + 2 ) ! = n = 1 2111 n + 1 + 1 1 ( n + 2 ) ! = n = 1 2111 n + 2 1 ( n + 2 ) ! = n = 1 2111 ( n + 2 ( n + 2 ) ! 1 ( n + 2 ) ! ) S = n = 1 2111 ( 1 ( n + 1 ) ! 1 ( n + 2 ) ! ) S = \displaystyle \sum_{n=1}^{2111} \frac{1}{n!(n+2)} = \displaystyle \sum_{n=1}^{2111} \frac{n+1}{n!(n+1)(n+2)} = \displaystyle \sum_{n=1}^{2111} \frac{n+1}{(n+2)!} \\ = \displaystyle \sum_{n=1}^{2111} \frac{n +1+1-1}{(n+2)!} = \displaystyle \sum_{n=1}^{2111} \frac{n + 2-1}{(n+2)!} = \displaystyle \sum_{n=1}^{2111} \left( \frac{n+2}{(n+2)!} - \frac{1}{(n+2)!} \right) \\ \therefore S = \displaystyle \sum_{n=1}^{2111} \left( \frac{1}{(n+1)!} - \frac{1}{(n+2)!} \right)

The sum is now in the form of a telescoping sum , therefore :

S = 1 ( 1 + 1 ) ! 1 ( ( 2111 + 1 ) + 1 ) ! = 1 2 1 ( 2113 ) ! , S = 1 2 1 a ! a = 2113 S = \frac{1}{(1+1)!} - \frac{1}{((2111 + 1) +1)!} = \frac{1}{2} - \frac{1}{(2113)!} \\ ,\because S = \frac{1}{2} - \frac{1}{a!} \\ \therefore a = 2113

\therefore The last three digits of a a are 113 113

Lakshaya Bangur
Nov 19, 2013

What I did is that I just checked The pattern I put 1 in the above equation than checked the value of a. a=3. than for n= 2 in the above equation I check the value of a , it came out to be 4, so for n = n the value of a should be a=n+2 so for n= 2111 the value of a should be a = 2113

Alei Reyes
Mar 21, 2014

We want to compute Sum 1/(n! (n+2)) let f(i) = 1/[(n+2)!] so -(f(i)-f(i-1)) = 1/(n! (n+2)) then it is easy to use a telescopic

Clarified by using Latex \( \sum {1/(n!(n+2))}~~ let f(i) = 1/(n+2)! ~~so

-(f(i)-f(i-1)) = 1/(n!(n+2)) \) ~~then~ it~is~easy~to~use~a~ telescopic

Niranjan Khanderia - 6 years, 10 months ago
Anirudha Nayak
Feb 1, 2014

FROM THE DENOMINATOR TAKE n! COMMON AND FACTORISE IT TO GET ( n + 2 ) 2 (n+2)^{2}

ONE OF THE (n+2) WILL BE CANCELLED.

MULTIPLY (n+1) IN NUMERATOR AND DENOMINATOR

DENOMINATOR CHANGES TO (n+2)!

CHANGE n+1=n+2-1

FACTORISE TO GET 1/(n+1)!-1/(n+2)!

PUT SOME VALUES TO OBTAIN A TELESCOPING SERIES

ANSWER-1/2!-1/2113!

SO 113 \boxed{113}

Gaurav Roy
Nov 24, 2013

Taking n=1 sum = (1/3) = (1/2) - (1/6)... therefore a! = 3! or a=3

Taking n=2 sum = (11/24) = (1/2) - (1/24)... therefore a! = 4! or a=4

Taking n=3 sum = (59/120) = (1/2) - (1/120)... therefore a! = 5! or a=5

As seen above, the diff between n and a is 2 Therfore for n=2111, a will be 2111+2=2113 Therefore the entered answer has to be 113

R Kumar
Nov 21, 2013

[(n+2)/n!+(n+1)!+(n+2)!]=1/n!(n+2) [on solving] 1/n!(n+2)=1/[n!+(n+1)!]=1/(n+1)!-1/(n+2)! now sum(1 to 2111)[(n+2)/n!+(n+1)!+(n+2)!]=(1/2!-1/3!)+(1/3!-1/4!)+........................(1/2112!-1/2113!) =1/2-1/2113! so last three digit of 2113 is 113

Using Latex yours is as follows.

( n + 2 ) n ! + ( n + 1 ) ! + ( n + 2 ) ! = 1 n ! ( n + 2 ) [ o n s o l v i n g ] \frac{(n+2)}{~ n!+(n+1)!+(n+2)!~ }=\frac{1}{n!(n+2)} [on~ solving]
1 n ! ( n + 2 ) = 1 n ! + ( n + 1 ) ! = 1 ( n + 1 ) ! 1 ( n + 2 ) ! \frac{1}{n!(n+2)}=\frac{1}{~ n!+(n+1)! ~}=\frac{1}{(n+1)!}-\frac{1}{(n+2)!}

n o w 1 2111 ( n + 2 ) n ! + ( n + 1 ) ! + ( n + 2 ) ! = now~ \sum_1^{ 2111}\frac{(n+2)}{~n!+(n+1)!+(n+2)!}=
( 1 / 2 ! 1 / 3 ! ) + ( 1 / 3 ! 1 / 4 ! ) + . . . . . . . . ( 1 / 2112 ! 1 / 2113 ! ) (1/2!-1/3!)+(1/3!-1/4!)+........(1/2112!-1/2113!)
= 1 / 2 1 / 2113 ! s o l a s t t h r e e d i g i t o f 2113 a r e 113 =1/2-1/2113! ~~so~~~ last~ three~ digit~ of~ 2113~ are ~113

Niranjan Khanderia - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...