Laws of Motion

A particle of mass m m is acted upon by a force F = F 0 cos ( π t 2 ) F=F_0 \cos\left(\dfrac{\pi t}{2}\right) . Then the distance traveled by the particle before it stops for the first time is k F 0 m π 2 \dfrac{kF_0}{m \pi^2} . Find k k (assuming initial velocity of the particle is 0).


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hosam Hajjir
Oct 15, 2017

From Newton's second law of motion,

m a = m d 2 x d t 2 = F 0 cos ( π t 2 ) m a = m \dfrac{d^2 x}{d t^2} = F_0 \cos(\dfrac{\pi t}{2})

Integrating with respect to time, and keeping in mind that the initial velocity is zero,

d x d t = F 0 m . 2 π sin ( π t 2 ) \dfrac{dx}{dt} = \dfrac{F_0}{m} . \dfrac{2}{\pi} \sin(\dfrac{\pi t}{2})

Note that velocity will be zero for the first time at t = 2 t = 2 .

Next, we integrate with respect to time again to obtain the position,

x ( t ) x 0 = F 0 m ( 2 π ) 2 cos ( π t 2 ) 0 t = F 0 m ( 2 π ) 2 ( cos ( π t 2 ) 1 ) x(t) - x_0 = -\dfrac{F_0}{m} (\dfrac{2}{\pi})^2 \cos(\dfrac{\pi t}{2}) \Big|_0^t = -\dfrac{F_0}{m} (\dfrac{2}{\pi})^2 ( \cos(\dfrac{\pi t}{2}) - 1)

Therefore, the displacement of the particle, at t = 2 t = 2 is

x ( 2 ) x 0 = F 0 m 4 π 2 ( 1 1 ) = 8 F 0 m π 2 x(2) - x_0 = -\dfrac{F_0}{m} \dfrac{4}{\pi^2} (-1 - 1) = \dfrac{ 8 F_0 }{m \pi^2 }

Hence, k = 8 k = 8 .

Chew-Seong Cheong
Oct 17, 2017

F = F 0 cos ( π t 2 ) By Newton’s second law m s ¨ = F 0 cos ( π t 2 ) where s ¨ = d 2 s d t 2 is the acceleration of the particle. s ¨ ( t ) = F 0 m cos ( π t 2 ) s ˙ ( t ) = F 0 m cos ( π t 2 ) d t where s ˙ = d s d t is the velocity of the particle. = 2 F 0 m π sin ( π t 2 ) + C where C is the constant of integration. s ˙ ( 0 ) = C = 0 Initial velocity is 0. s ˙ ( t ) = 2 F 0 m π sin ( π t 2 ) s ( t ) = 2 F 0 m π sin ( π t 2 ) d t where s ( t ) is the displacement of the particle. = 4 F 0 m π 2 cos ( π t 2 ) + C s ( 0 ) = 4 F 0 m π 2 + C = 0 C = 4 F 0 m π 2 s ( t ) = 4 F 0 m π 2 ( 1 cos ( π t 2 ) ) \begin{aligned} F & = F_0 \cos \left(\frac {\pi t}2\right) & \small \color{#3D99F6} \text{By Newton's second law} \\ m \color{#3D99F6}\ddot s & = F_0 \cos \left(\frac {\pi t}2\right) & \small \color{#3D99F6} \text{where }\ddot s = \frac {d^2s}{dt^2} \text{ is the acceleration of the particle.} \\ \implies \ddot s(t) & = \frac {F_0}m \cos \left(\frac {\pi t}2\right) \\ \color{#3D99F6} \dot s(t) & = \int \frac {F_0}m \cos \left(\frac {\pi t}2\right) dt & \small \color{#3D99F6} \text{where }\dot s = \frac {ds}{dt} \text{ is the velocity of the particle.} \\ & = \frac {2F_0}{m\pi} \sin \left(\frac {\pi t}2\right) + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ \dot s (0) & = C = \color{#3D99F6} 0 & \small \color{#3D99F6} \text{Initial velocity is 0.} \\ \implies \dot s(t) & = \frac {2F_0}{m\pi} \sin \left(\frac {\pi t}2\right) \\ \color{#3D99F6} s(t) & = \int \frac {2F_0}{m\pi} \sin \left(\frac {\pi t}2\right) dt & \small \color{#3D99F6} \text{where }s(t) \text{ is the displacement of the particle.} \\ & = - \frac {4F_0}{m\pi^2} \cos \left(\frac {\pi t}2\right) + C \\ s(0) & = - \frac {4F_0}{m\pi^2} + C = 0 \\ C & = \frac {4F_0}{m\pi^2} \\ \implies s(t) & = \frac {4F_0}{m\pi^2} \left(1-\cos \left(\frac {\pi t}2\right)\right) \end{aligned}

The particle first stops, when s ˙ ( t ) = 2 F 0 m π sin ( π t 2 ) = 0 \dot s(t) = \dfrac {2F_0}{m\pi} \sin \left(\dfrac {\pi t}2\right) = 0 . That is t = 2 t=2 .

The distance traveled by the particle then s ( 2 ) = 4 F 0 m π 2 ( 1 cos π ) = 8 F 0 m π 2 s(2) = \dfrac {4F_0}{m\pi^2} \left(1-\cos \pi \right) = \dfrac {8F_0}{m\pi^2}

k = 8 \implies k = \boxed{8}

Ha, in my first attempt, I forgot the initial conditions. Thank you sir for the perfect solution.

Krishna Karthik - 1 year, 1 month ago

Log in to reply

You are welcome

Chew-Seong Cheong - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...