Laws of summations

Algebra Level 4

For all integer k > 1 k > 1

r = 1 k 2 r ( n r ) ( k 1 r 1 ) r = 0 k ( n r ) ( n + k r 1 n 1 ) = ? \large \frac { \displaystyle \sum _{ r=1 }^{ k }{ { 2 }^{ r }\begin{pmatrix} n \\ r \end{pmatrix}\begin{pmatrix} k-1 \\ r-1 \end{pmatrix} } }{\displaystyle \sum _{ r=0 }^{ k }{ \begin{pmatrix} n \\ r \end{pmatrix}\begin{pmatrix} n+k-r-1 \\ n-1 \end{pmatrix} } }=?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let us analyse the numerator :

N = r = 1 k 2 r ( n r ) ( k 1 k r ) N= \displaystyle\sum_{r=1}^k 2^r \dbinom{n}{r}\dbinom{k-1}{k-r}

Above expansion is equal to the coefficient of x k x^k in the expansion of :

( 1 + 2 x ) n ( 1 + x ) k 1 = ( 1 + x + x ) n ( 1 + x ) k 1 (1+2x)^n(1+x)^{k-1}= (1+x+x)^n(1+x)^{k-1}

= r = 0 n ( n r ) x r ( 1 + x ) n r ( 1 + x ) k 1 = \displaystyle\sum_{r=0}^n \dbinom{n}{r} x^r (1+x)^{n-r}(1+x)^{k-1}

= r = 0 n ( n r ) x r ( 1 + x ) n + k r 1 = \displaystyle\sum_{r=0}^n \dbinom{n}{r} x^r (1+x)^{n+k-r-1}

Coefficient of x k x^k in the above expression is :

r = 0 n ( n r ) ( n + k r 1 k r ) = r = 0 n ( n r ) ( n + k r 1 n 1 ) \displaystyle\sum_{r=0}^n \dbinom{n}{r}\dbinom{n+k-r-1}{k-r}=\displaystyle\sum_{r=0}^n \dbinom{n}{r}\dbinom{n+k-r-1}{n-1}

Hence ,

r = 0 n ( n r ) ( n + k r 1 n 1 ) = r = 1 k 2 r ( n r ) ( k 1 r 1 ) \displaystyle\sum_{r=0}^n \dbinom{n}{r}\dbinom{n+k-r-1}{n-1} = \displaystyle\sum_{r=1}^k 2^r \dbinom{n}{r}\dbinom{k-1}{r-1}

You're missing 1 small final step. Do you see what it is?

Calvin Lin Staff - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...