Lazy Limits 5!

Calculus Level 3

L = lim x 0 sin 1 x tan 1 x x 3 \large L = \displaystyle\large\lim_{x\to 0}\dfrac{\sin^{-1} x - \tan^{-1} x}{x^3}

Find L L .


Inspiration


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 12, 2016

L = lim x 0 sin 1 x tan 1 x x 3 By Maclaurin series (note that x < 1 ) = lim x 0 ( x + 1 6 x 3 + 3 40 x 5 + . . . ) ( x 1 3 x 3 + 1 5 x 5 . . . ) x 3 = lim x 0 1 2 x 3 1 8 x 5 + O ( x 7 ) x 3 Divide up and down by x 3 = lim x 0 1 2 1 8 x 2 + O ( x 4 ) 1 = 1 2 = 0.5 \begin{aligned} L & = \lim_{x \to 0} \frac {\color{#3D99F6}{\sin^{-1}x} - \color{#3D99F6}{\tan^{-1}x} }{x^3} \quad \quad \small \color{#3D99F6}{\text{By Maclaurin series (note that }|x| < 1)} \\ & = \lim_{x \to 0} \frac {\color{#3D99F6}{\left(x + \frac 16 x^3 + \frac 3{40} x^5+...\right)} - \color{#3D99F6}{\left(x - \frac 13 x^3 + \frac 15 x^5-...\right)}}{x^3} \\ & = \lim_{x \to 0} \frac {\frac 12 x^3 - \frac 18 x^5 + O(x^7)}{x^3} \quad \quad \small \color{#3D99F6}{\text{Divide up and down by }x^3} \\ & = \lim_{x \to 0} \frac {\frac 12 - \frac 18 x^2 + O(x^4)}{1} \\ & = \frac 12 = \boxed{0.5} \end{aligned}

Sir , could you please explain that 'o' notation in brief.

Syed Shahabudeen - 4 years, 11 months ago

Log in to reply

It is a short way to write a 4 x 4 + a 6 x 6 + a 8 x 8 + . . . a_4x^4+a_6x^6 + a_8x^8 +... . That is O ( x 4 ) = a 4 x 4 + a 6 x 6 + a 8 x 8 + . . . O(x^4) = a_4x^4+a_6x^6 + a_8x^8 +... which means that the following terms have x x with powers 4 and higher. So when x 0 x \to 0 , O ( 0 ) = 0 O(0) = 0 .

Chew-Seong Cheong - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...