Lazy Limits 7!

Calculus Level 3

lim x 0 ( cos x ) 1 / x 2 = ? \large \lim_{x\to0} ( \cos x)^{1/{ x^2}} = \, ?

Give your answer to 1 decimal place.


The answer is 0.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Huang
Dec 8, 2016

Express y = lim x 0 ( cos ( x ) ) 1 / x 2 ln ( y ) = lim x 0 1 x 2 ln ( cos ( x ) ) = lim x 0 ln ( cos ( x ) ) x 2 \begin{array}{rl} y &= \lim_{x \rightarrow 0} \left(\cos(x)\right)^{1/x^2}\\ \ln(y) &= \lim_{x \rightarrow 0} \dfrac{1}{x^2} \ln\left(\cos(x)\right)\\ &= \lim_{x \rightarrow 0} \dfrac{\ln\left(\cos(x)\right)}{x^2} \end{array} Since as x 0 x \rightarrow 0 , ln ( cos ( x ) ) x 2 0 0 \dfrac{\ln\left(\cos(x)\right)}{x^2} \rightarrow \dfrac{0}{0} . In this case, apply L'Hôpital's Rule to get lim x 0 d d x [ ln ( cos ( x ) ) ] d d x [ x 2 ] = lim x 0 sin ( x ) cos ( x ) 2 x = lim x 0 sin ( x ) 2 x cos ( x ) = 1 2 lim x 0 sin ( x ) x cos ( x ) \begin{array}{rl} \lim_{x \rightarrow 0} \dfrac{\frac{d}{dx}\left[\ln\left(\cos(x)\right)\right]}{\frac{d}{dx}\left[x^2\right]} &= \lim_{x \rightarrow 0} \dfrac{-\frac{\sin(x)}{\cos(x)}}{2x}\\ &= \lim_{x \rightarrow 0} -\dfrac{\sin(x)}{2x\cos(x)}\\ &= -\dfrac{1}{2} \lim_{x \rightarrow 0} \dfrac{\sin(x)}{x\cos(x)} \end{array} Because lim x 0 f ( x ) g ( x ) = lim x 0 f ( x ) lim x 0 g ( x ) \lim_{x\rightarrow 0} f(x)g(x) = \lim_{x\rightarrow 0} f(x) \cdot \lim_{x\rightarrow 0}g(x) where f ( x ) = sin ( x ) x f(x) = \dfrac{\sin(x)}{x} and g ( x ) = 1 cos ( x ) g(x) = \dfrac{1}{\cos(x)} , we express the limit as 1 2 ( lim x 0 sin ( x ) x ) ( lim x 0 1 cos ( x ) ) -\dfrac{1}{2} \left(\lim_{x \rightarrow 0} \dfrac{\sin(x)}{x}\right)\left(\lim_{x \rightarrow 0} \dfrac{1}{\cos(x)}\right) Since lim x 0 sin ( x ) x = 1 and lim x 0 1 cos ( x ) = 1 \lim_{x \rightarrow 0} \dfrac{\sin(x)}{x} = 1 \quad \text{and} \quad \lim_{x \rightarrow 0} \dfrac{1}{\cos(x)} = 1 ln ( y ) = 1 2 ( lim x 0 sin ( x ) x ) ( lim x 0 1 cos ( x ) ) = 1 2 1 1 ln ( y ) = 1 2 y = e 1 / 2 = 1 e \begin{array}{rl} \ln(y) &= -\dfrac{1}{2} \left(\lim_{x \rightarrow 0} \dfrac{\sin(x)}{x}\right)\left(\lim_{x \rightarrow 0} \dfrac{1}{\cos(x)}\right)\\ &= -\dfrac{1}{2} \cdot 1 \cdot 1\\ \ln(y) &= -\dfrac{1}{2}\\ y &= e^{-1/2} = \dfrac{1}{\sqrt{e}} \end{array} Thus, e 1 / 2 0.606 \boxed{e^{-1/2} \approx 0.606} .

Relevant wiki: L'Hopital's Rule - Basic

L = lim x 0 ( cos x ) 1 x 2 A 1 case, use lim x a ( f ( x ) g ( x ) ) h ( x ) = e lim x a h ( x ) ( f ( x ) g ( x ) 1 ) = exp ( lim x 0 cos x 1 x 2 ) A 0/0 cases, L’H o ˆ pital’s rule applies. = exp ( lim x 0 sin x 2 x ) Differentiate up and down w.r.t. x = exp ( lim x 0 cos x 2 ) Differentiate up and down again = e 1 2 = 1 e 0.607 \begin{aligned} L & = \lim_{x \to 0} (\cos x)^{\frac 1{x^2}} & \small \color{#3D99F6}\text{A }1^\infty \text{ case, use } \lim_{x \to a} \left(\frac {f(x)}{g(x)}\right)^{h(x)} = e^{\lim_{x \to a} h(x) \left(\frac {f(x)}{g(x)}-1\right)} \\ & = \exp \left(\lim_{x \to 0} \frac {\cos x -1}{x^2} \right) & \small \color{#3D99F6}\text{A 0/0 cases, L'Hôpital's rule applies.} \\ & = \exp \left(\lim_{x \to 0} \frac {-\sin x}{2x} \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \exp \left(\lim_{x \to 0} \frac {-\cos x}{2} \right) & \small \color{#3D99F6} \text{Differentiate up and down again} \\ & = e^{-\frac 12} = \frac 1{\sqrt e} \approx \boxed{0.607} \end{aligned}

You worked a lot, You should have done it in the third step only, Why u again differentiated?

Md Zuhair - 3 years, 11 months ago

Log in to reply

I know lim x 0 sin x x = 1 \lim_{x \to 0} \dfrac {\sin x}x = 1 . Just want to show that how we get it. Of course we can also get it from Maclaurin's series.

Chew-Seong Cheong - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...