Lazy Limits 9!

Calculus Level 5

lim x 0 x sin ( sin ( x ) ) sin 2 x x 6 \displaystyle\large \lim_{x\to0}\dfrac{{x \sin(\sin (x))}-\sin^2x}{x^6}

If the limit above can be expressed as a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prakhar Bindal
Dec 10, 2016

Relevant wiki: Taylor Series - Problem Solving

By Maclaurin's Series of sinx we use

sinx = x-x^3/6......................

Rest of the terms are insignificant to us

Putting in the above limit(numerator)

xsin(x-x^3/6)-(x-x^3/6)^2

Again use maclaurin's series of sinx and collect terms of x^6 in numerator

The coefficient will be 1/18

hence limit is 1/18 making the answer 1+18 = 19

@Prakhar Bindal we have to take terms upto x 5 / 120 x^5/120 in the Maclaurin's series expansion to get the desired answer. If we take terms upto x 3 / 6 x^3/6 then we don't get the required answer as we have an extra term of 1 / 120 1/120 in coefficient of x 6 x^6

Ravneet Singh - 4 years, 6 months ago

Let y = sin x y=\sin x . Then as x 0 x \to 0 , y 0 y \to 0 . Therefore the limit advances to:

lim y 0 arcsin ( y ) sin ( y ) y 2 ( arcsin ( x ) ) 6 \large \displaystyle \lim_{y \to 0} \frac{\arcsin \left(y\right)\sin \left(y\right)-y^2}{\left(\arcsin \left(x\right)\right)^6}

Plugging in the Taylor's Expansions for sin y \sin y and arcsin y \arcsin y :

sin y = y y 3 3 ! + y 5 5 ! y 7 7 ! + . . . \sin y = y-\frac{y^3}{3!}+\frac{y^5}{5!}-\frac{y^7}{7!}+...

arcsin y = y + y 3 6 + 3 y 5 40 + . . . \arcsin y = y+\frac{y^3}{6}+\frac{3y^5}{40}+...

lim y 0 ( y + y 3 6 + 3 y 5 40 + . . . ) ( y y 3 3 ! + y 5 5 ! . . . ) y 2 ( y + y 3 6 + 3 y 5 40 + . . . ) \large \displaystyle \lim_{y \to 0} \frac{\left(y+\frac{y^3}{6}+\frac{3y^5}{40}+...\right)\left(y-\frac{y^3}{3!}+\frac{y^5}{5!}-...\right)-y^2}{\left(y+\frac{y^3}{6}+\frac{3y^5}{40}+...\right)}

Now we arrange all x 6 x^6 terms in the numerator and the denominator: (For this limit to exist in the form a b \frac{a}{b} all the terms with degree lesser than 6 must cancel out and terms with degree more than 6 must evaluate to 0 as y 0 y \to 0 )

lim y 0 ( y y 5 5 ! y 3 6 y 3 3 ! + 3 y 5 40 y ) y 6 \large \displaystyle \lim_{y \to 0} \frac{\left(y\cdot \frac{y^5}{5!}-\frac{y^3}{6}\cdot \frac{y^3}{3!}+\frac{3y^5}{40}\cdot y\right)}{y^6}

lim y 0 y 6 ( 1 120 1 36 + 3 40 ) y 6 \large \displaystyle \lim_{y \to 0} \frac{y^6\left(\frac{1}{120}-\frac{1}{36}+\frac{3}{40}\right)}{y^6}

1 120 1 36 + 3 40 = 1 18 \frac{1}{120}-\frac{1}{36}+\frac{3}{40} = \boxed{\frac{1}{18}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...