Least Common Multiple

Find the number of ordered pairs of positive integers a a and b b such that their lowest common multiple is 86189457748961.


The answer is 105.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kristian Vasilev
Dec 4, 2014

8618947748961 = 7 3 × 4007 × 7919 2 , w h e r e 7 , 4007 , 7919 a r e p r i m e s . L e t L C M ( a ; b ) = p 1 α 1 × p 2 α 2 × p 3 α 3 , w h e r e p 1 , p 2 , p 3 a r e p r i m e s . L e t ( a ; b ) = d . L e t a = d × n a n d b = d × k , w h e r e ( n ; k ) = 1. T h e n L C M ( a ; b ) = d × n × k . S o d × n × k = p 1 α 1 × p 2 α 2 × p 3 α 3 , b u t i n e v e r y m o m e n t n k = p 1 i 1 × p 2 i 2 × p 3 i 3 , w h e r e 0 i j α j , w h e r e 1 j 3. L e t i j 1. S o t h e n u m b e r o f o r d e r e d p a i r s n a n d k i s 2 3 × α 1 × α 2 × α 3 ( b e c a u s e ( n ; k ) = 1 a n d 1 i j α j ) . I f i j = 0 f o r s o m e j , w e h a v e 2 2 ( α 1 × α 2 + α 1 × α 3 + α 2 × α 3 ) o r d e r e d p a i r s ( b e c a u s e j c a n b e 1 , 2 o r 3 a n d ( n ; k ) = 1 ) I f i j 1 = i j 2 = 0 a n d i j 3 > 0 , w e h a v e 2 1 ( α 1 + α 2 + α 3 ) o r d e r e d p a i r s n a n d k ( b e c a u s e j 3 c a n b e 1 , 2 o r 3 a n d ( n ; k ) = 1 ) . A n d i f i j = 0 f o r e v e r y j , w e h a v e 1 o r d e r e d p a i r n a n d k ( b e c a u s e n × k = 1 ) S o i f L C M ( a ; b ) = p 1 α 1 × p 2 α 2 × p 3 α 3 , w e h a v e 8 × α 1 × α 2 × α 3 + 4 ( α 1 × α 2 + α 1 × α 3 + α 2 × α 3 ) + 2 ( α 1 + α 2 + α 3 ) + 1. S o t h e a n s w e r o f t h e p r o b l e m i s 8 × 3 × 1 × 2 + 4 ( 1 × 2 + 1 × 3 + 2 × 3 ) + 2 ( 1 + 2 + 3 ) + 1 = 48 + 44 + 12 + 1 = 105. A N S W E R : 105 \quad 8618947748961={ 7 }^{ 3 }\times 4007\times { 7919 }^{ 2 },where\quad 7,4007,7919\quad are\quad primes.Let\quad LCM(a;b)={ { p }_{ 1 } }^{ { \alpha }_{ 1 } }\times { { p }_{ 2 } }^{ { \alpha }_{ 2 } }\times { { p }_{ 3 } }^{ { \alpha }_{ 3 } },\\ where\quad { p }_{ 1 },{ p }_{ 2 },{ p }_{ 3 }\quad are\quad primes.Let\quad (a;b)=d.Let\quad a=d\times n\quad and\quad b=d\times k,where\quad (n;k)=1.Then\quad LCM(a;b)=d\times n\times k.\\ So\quad d\times n\times k={ { p }_{ 1 } }^{ { \alpha }_{ 1 } }\times { { p }_{ 2 } }^{ { \alpha }_{ 2 } }\times { { p }_{ 3 } }^{ { \alpha }_{ 3 } },but\quad in\quad every\quad moment\quad nk={ { p }_{ 1 } }^{ { i }_{ 1 } }\times { { p }_{ 2 } }^{ { i }_{ 2 } }\times { { p }_{ 3 } }^{ { i }_{ 3 } },where\quad \quad 0\le { i }_{ j }\le { \alpha }_{ j },where\quad \quad \quad 1\le j\le 3.\quad \\ Let\quad { i }_{ j }\ge 1.So\quad the\quad number\quad of\quad ordered\quad pairs\quad n\quad and\quad k\quad is\quad { 2 }^{ 3 }\times { \alpha }_{ 1 }\times { \alpha }_{ 2 }\times { { \alpha }_{ 3 } }(because\quad (n;k)=1\quad and\quad 1{ \le i }_{ j }\le { \alpha }_{ j }).\\ If\quad { i }_{ j }=0\quad for\quad some\quad j,we\quad have\quad \quad { 2 }^{ 2 }({ \alpha }_{ 1 }\times { \alpha }_{ 2 }+{ \alpha }_{ 1 }\times { \alpha }_{ 3 }+{ \alpha }_{ 2 }\times { \alpha }_{ 3 })\quad ordered\quad pairs\quad (because\quad j\quad can\quad be\quad 1,\quad 2\quad or\quad 3\quad and\quad (n;k)=1)\\ If\quad { i }_{ { j }_{ 1 } }={ i }_{ { j }_{ 2 } }=0\quad \quad and\quad { i }_{ { j }_{ 3 } }>0,\quad we\quad have\quad { 2 }^{ 1 }({ \alpha }_{ 1 }+{ \alpha }_{ 2 }+{ \alpha }_{ 3 })\quad ordered\quad pairs\quad n\quad and\quad k(because\quad { j }_{ 3 }\quad can\quad be\quad 1,\quad 2\quad or\quad 3\quad and\quad (n;k)=1).\\ And\quad if\quad { i }_{ j }=0\quad for\quad every\quad j,we\quad have\quad 1\quad ordered\quad pair\quad n\quad and\quad k(because\quad n\times k=1)\\ So\quad if\quad LCM(a;b)={ { p }_{ 1 } }^{ { \alpha }_{ 1 } }\times { { p }_{ 2 } }^{ { \alpha }_{ 2 } }\times { { p }_{ 3 } }^{ { \alpha }_{ 3 } },\quad we\quad have\quad 8\times { \alpha }_{ 1 }\times { \alpha }_{ 2 }\times { \alpha }_{ 3 }+4({ \alpha }_{ 1 }\times { \alpha }_{ 2 }+{ \alpha }_{ 1 }\times { \alpha }_{ 3 }+{ \alpha }_{ 2 }\times { \alpha }_{ 3 })+2({ \alpha }_{ 1 }+{ \alpha }_{ 2 }+{ \alpha }_{ 3 })+1.So\quad the\quad answer\quad of\quad the\quad \quad problem\quad is\\ 8\times 3\times 1\times 2+4(1\times 2+1\times 3+2\times 3)+2(1+2+3)+1=48+44+12+1=105.ANSWER:\boxed { 105 } \\ \quad \quad

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...