Find the number of ordered pairs of positive integers and such that their lowest common multiple is 86189457748961.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
8 6 1 8 9 4 7 7 4 8 9 6 1 = 7 3 × 4 0 0 7 × 7 9 1 9 2 , w h e r e 7 , 4 0 0 7 , 7 9 1 9 a r e p r i m e s . L e t L C M ( a ; b ) = p 1 α 1 × p 2 α 2 × p 3 α 3 , w h e r e p 1 , p 2 , p 3 a r e p r i m e s . L e t ( a ; b ) = d . L e t a = d × n a n d b = d × k , w h e r e ( n ; k ) = 1 . T h e n L C M ( a ; b ) = d × n × k . S o d × n × k = p 1 α 1 × p 2 α 2 × p 3 α 3 , b u t i n e v e r y m o m e n t n k = p 1 i 1 × p 2 i 2 × p 3 i 3 , w h e r e 0 ≤ i j ≤ α j , w h e r e 1 ≤ j ≤ 3 . L e t i j ≥ 1 . S o t h e n u m b e r o f o r d e r e d p a i r s n a n d k i s 2 3 × α 1 × α 2 × α 3 ( b e c a u s e ( n ; k ) = 1 a n d 1 ≤ i j ≤ α j ) . I f i j = 0 f o r s o m e j , w e h a v e 2 2 ( α 1 × α 2 + α 1 × α 3 + α 2 × α 3 ) o r d e r e d p a i r s ( b e c a u s e j c a n b e 1 , 2 o r 3 a n d ( n ; k ) = 1 ) I f i j 1 = i j 2 = 0 a n d i j 3 > 0 , w e h a v e 2 1 ( α 1 + α 2 + α 3 ) o r d e r e d p a i r s n a n d k ( b e c a u s e j 3 c a n b e 1 , 2 o r 3 a n d ( n ; k ) = 1 ) . A n d i f i j = 0 f o r e v e r y j , w e h a v e 1 o r d e r e d p a i r n a n d k ( b e c a u s e n × k = 1 ) S o i f L C M ( a ; b ) = p 1 α 1 × p 2 α 2 × p 3 α 3 , w e h a v e 8 × α 1 × α 2 × α 3 + 4 ( α 1 × α 2 + α 1 × α 3 + α 2 × α 3 ) + 2 ( α 1 + α 2 + α 3 ) + 1 . S o t h e a n s w e r o f t h e p r o b l e m i s 8 × 3 × 1 × 2 + 4 ( 1 × 2 + 1 × 3 + 2 × 3 ) + 2 ( 1 + 2 + 3 ) + 1 = 4 8 + 4 4 + 1 2 + 1 = 1 0 5 . A N S W E R : 1 0 5