Least odd natural number

Algebra Level 5

{ A n = ( 3 4 ) ( 3 4 ) 2 + ( 3 4 ) 3 + + ( 1 ) n 1 ( 3 4 ) n B n = 1 A n \begin{cases} A_n=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+\cdots+(-1)^{n-1}\left(\frac{3}{4}\right)^n \\ B_n=1-A_n \end{cases}

Find the least odd positive integer, n 0 n_0 such that B n > A n B_n>A_n for all n n 0 n \geq n_0 .


You can try my other Sequences And Series problems by clicking here : Part II and here : Part I.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 18, 2014

A n = ( 3 4 ) ( 3 4 ) 2 + ( 3 4 ) 3 . . . + ( 1 ) n 1 ( 3 4 ) n A_n = \left( \frac {3}{4} \right) - \left( \frac {3}{4} \right)^2 + \left( \frac {3}{4} \right)^3 - ... + (-1)^{n-1} \left( \frac {3}{4} \right)^n

For an odd n n ,

A n = ( 3 4 ) + ( 3 4 ) 2 + ( 3 4 ) 3 + . . . + ( 3 4 ) n A_n = \left( \frac {3}{4} \right) + \left( \frac {3}{4} \right)^2 + \left( \frac {3}{4} \right)^3 + ... + \left( \frac {3}{4} \right)^n 2 [ ( 3 4 ) 2 + ( 3 4 ) 4 + ( 3 4 ) 6 + . . . + ( 1 ) n 1 ( 3 4 ) n 1 ] \quad \quad \quad \quad - 2 \left[ \left( \frac {3}{4} \right)^2 + \left( \frac {3}{4} \right)^4 + \left( \frac {3}{4} \right)^6 + ... + (-1)^{n-1} \left( \frac {3}{4} \right)^{n-1} \right]

= 3 4 [ 1 + ( 3 4 ) 2 + ( 3 4 ) 4 + . . . + ( 1 ) n 1 ( 3 4 ) n 1 ] \quad \space \space = \frac {3}{4} \left[ 1 + \left( \frac {3}{4} \right)^2 + \left( \frac {3}{4} \right)^4 + ... + (-1)^{n-1} \left( \frac {3}{4} \right)^{n-1} \right] 2 ( 3 4 ) 2 [ ( 1 + 3 4 ) 2 + ( 3 4 ) 4 + . . . + ( 1 ) n 1 ( 3 4 ) n 2 ] \quad \quad \quad \quad - 2 \left( \frac {3}{4} \right)^2 \left[ \left( 1 + \frac {3}{4} \right)^2 + \left( \frac {3}{4} \right)^4 + ... + (-1)^{n-1} \left( \frac {3}{4} \right)^{n-2} \right]

= 3 4 [ 1 ( 3 4 ) n 1 ( 3 4 ) ] 2 ( 9 16 ) [ 1 ( 3 4 ) n 1 1 ( 9 16 ) ] \quad \space \space = \frac {3}{4} \left[ \dfrac {1 - \left( \frac {3}{4} \right)^n } {1 - \left( \frac {3}{4} \right)} \right] - 2 \left( \frac {9}{16} \right) \left[ \dfrac {1- \left( \frac {3}{4} \right)^{n-1}} {1- \left( \frac {9}{16} \right) } \right]

= 3 [ 1 ( 3 4 ) n ] 18 7 [ 1 ( 3 4 ) n 1 ] \quad \space \space = 3 \left[ 1 - \left( \frac {3}{4} \right)^n \right] - \frac {18}{7} \left[ 1 - \left(\frac {3}{4} \right)^{n-1} \right]

= 3 3 ( 3 4 ) n 18 7 + 18 7 ( 3 4 ) n 1 \quad \space \space = 3 - 3 \left( \frac {3}{4} \right)^n - \frac {18}{7} + \frac {18}{7} \left(\frac {3}{4} \right)^{n-1}

= 3 7 + 9 28 ( 3 4 ) n 1 \quad \space \space = \frac {3}{7} + \frac {9}{28} \left(\frac {3}{4} \right)^{n-1}

For B n > A n 1 A n > A n A n < 1 2 B_n > A_n\quad \Rightarrow 1 - A_n > A_n \quad \Rightarrow A_n < \frac {1} {2}

3 7 + 9 28 ( 3 4 ) n 1 < 1 2 ( 3 4 ) n 1 < 2 9 \Rightarrow \frac {3}{7} + \frac {9}{28} \left(\frac {3}{4} \right)^{n-1} < \frac {1}{2} \quad \Rightarrow \left(\frac {3}{4} \right)^{n-1} < \frac {2}{9}

( n 1 ) log ( 3 4 ) < log ( 2 9 ) \Rightarrow (n-1) \log {\left(\frac {3}{4} \right)} < \log {\left(\frac {2}{9} \right) }

0.124938737 ( n 1 ) < 0.653212514 \Rightarrow -0.124938737 (n-1) < -0.653212514

n 1 > 5.228262519 n > 7 \Rightarrow n - 1 > 5.228262519 \quad \Rightarrow n > \boxed {7}

Awesome solution. . as usual.

Sandeep Bhardwaj - 6 years, 5 months ago

Log in to reply

Sir I'am gotta confused with the answer I think n o { n }_{ o } . should be 5

Can you explain me it please ? Thanks Sir's @Sandeep Bhardwaj @Chew-Seong Cheong

Karan Shekhawat - 6 years, 5 months ago

Log in to reply

Sorry, I think your confusion comes from:

( n 1 ) log ( 3 4 ) \Rightarrow (n-1) \log {\left(\frac {3}{4} \right)} " > > " log ( 2 9 ) \log {\left(\frac {2}{9} \right) }

That was a typo. It should be " < < ". I have edited it.

( n 1 ) log ( 3 4 ) < log ( 2 9 ) \Rightarrow (n-1) \log {\left(\frac {3}{4} \right)} < \log {\left(\frac {2}{9} \right) }

0.124938737 ( n 1 ) < 0.653212514 \Rightarrow -0.124938737 (n-1) < -0.653212514

Here when you multiply both sides with 1 -1 , the inequality sign changes from " < < " to " > > ".

+ 0.124938737 ( n 1 ) > + 0.653212514 \Rightarrow +0.124938737 (n-1) > +0.653212514

n 1 > 5.228262519 n > 7 \Rightarrow n - 1 > 5.228262519 \quad \Rightarrow n > \boxed {7}

Chew-Seong Cheong - 6 years, 5 months ago

I COULD NOT UNDERSTAND THE FIRST STEP. can you explain? please

ramesh perumal - 6 years, 5 months ago

Actually, $B 6>A 6$ - you are welcome to check that...

Dennis Gulko - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...