{ A n = ( 4 3 ) − ( 4 3 ) 2 + ( 4 3 ) 3 + ⋯ + ( − 1 ) n − 1 ( 4 3 ) n B n = 1 − A n
Find the least odd positive integer, n 0 such that B n > A n for all n ≥ n 0 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Awesome solution. . as usual.
Log in to reply
Sir I'am gotta confused with the answer I think n o . should be 5
Can you explain me it please ? Thanks Sir's @Sandeep Bhardwaj @Chew-Seong Cheong
Log in to reply
Sorry, I think your confusion comes from:
⇒ ( n − 1 ) lo g ( 4 3 ) " > " lo g ( 9 2 )
That was a typo. It should be " < ". I have edited it.
⇒ ( n − 1 ) lo g ( 4 3 ) < lo g ( 9 2 )
⇒ − 0 . 1 2 4 9 3 8 7 3 7 ( n − 1 ) < − 0 . 6 5 3 2 1 2 5 1 4
Here when you multiply both sides with − 1 , the inequality sign changes from " < " to " > ".
⇒ + 0 . 1 2 4 9 3 8 7 3 7 ( n − 1 ) > + 0 . 6 5 3 2 1 2 5 1 4
⇒ n − 1 > 5 . 2 2 8 2 6 2 5 1 9 ⇒ n > 7
I COULD NOT UNDERSTAND THE FIRST STEP. can you explain? please
Actually, $B 6>A 6$ - you are welcome to check that...
Problem Loading...
Note Loading...
Set Loading...
A n = ( 4 3 ) − ( 4 3 ) 2 + ( 4 3 ) 3 − . . . + ( − 1 ) n − 1 ( 4 3 ) n
For an odd n ,
A n = ( 4 3 ) + ( 4 3 ) 2 + ( 4 3 ) 3 + . . . + ( 4 3 ) n − 2 [ ( 4 3 ) 2 + ( 4 3 ) 4 + ( 4 3 ) 6 + . . . + ( − 1 ) n − 1 ( 4 3 ) n − 1 ]
= 4 3 [ 1 + ( 4 3 ) 2 + ( 4 3 ) 4 + . . . + ( − 1 ) n − 1 ( 4 3 ) n − 1 ] − 2 ( 4 3 ) 2 [ ( 1 + 4 3 ) 2 + ( 4 3 ) 4 + . . . + ( − 1 ) n − 1 ( 4 3 ) n − 2 ]
= 4 3 [ 1 − ( 4 3 ) 1 − ( 4 3 ) n ] − 2 ( 1 6 9 ) [ 1 − ( 1 6 9 ) 1 − ( 4 3 ) n − 1 ]
= 3 [ 1 − ( 4 3 ) n ] − 7 1 8 [ 1 − ( 4 3 ) n − 1 ]
= 3 − 3 ( 4 3 ) n − 7 1 8 + 7 1 8 ( 4 3 ) n − 1
= 7 3 + 2 8 9 ( 4 3 ) n − 1
For B n > A n ⇒ 1 − A n > A n ⇒ A n < 2 1
⇒ 7 3 + 2 8 9 ( 4 3 ) n − 1 < 2 1 ⇒ ( 4 3 ) n − 1 < 9 2
⇒ ( n − 1 ) lo g ( 4 3 ) < lo g ( 9 2 )
⇒ − 0 . 1 2 4 9 3 8 7 3 7 ( n − 1 ) < − 0 . 6 5 3 2 1 2 5 1 4
⇒ n − 1 > 5 . 2 2 8 2 6 2 5 1 9 ⇒ n > 7