Lebesgue Integral of sin x x \frac{\sin x}{x} ?

Calculus Level 4

True or False?

The Lebesgue integral

R sin x x d x = π . \int_\mathbb{R} \frac{\sin x}{x} \,dx = \pi.

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 27, 2018

Note that sin x x 1 2 ( n + 5 6 ) π > 1 2 π ( n + 1 ) ( n + 1 6 ) π x ( n + 5 6 ) π \left|\frac{\sin x}{x}\right| \; \ge \; \frac{1}{2(n+\frac56)\pi} \; > \; \frac{1}{2\pi(n+1)} \hspace{2cm} (n+\tfrac16)\pi \le x \le (n + \tfrac56)\pi for any integer n 0 n \ge 0 . Thus we deduce that n π ( n + 1 ) π sin x x d x 1 2 ( n + 1 ) π × 2 3 π = 1 3 ( n + 1 ) \int_{n\pi}^{(n+1)\pi}\left|\frac{\sin x}{x}\right|\,dx \; \ge \; \frac{1}{2(n+1)\pi} \times \tfrac23\pi \; =\; \frac{1}{3(n+1)} for any integer n 0 n \ge 0 .

If sin x x \frac{\sin x}{x} is Lebesgue integrable over R \mathbb{R} , then so is sin x x \left|\frac{\sin x}{x}\right| , and hence n = 0 N 1 1 3 ( n + 1 ) n = 0 N 1 n π ( n + 1 ) π sin x x d x = 0 N π sin x x d x 0 sin x x d x \sum_{n=0}^{N-1} \frac{1}{3(n+1)} \; \le \; \sum_{n=0}^{N-1} \int_{n\pi}^{(n+1)\pi} \left|\frac{\sin x}{x} \right|\,dx \; = \; \int_0^{N\pi} \left|\frac{\sin x}{x}\right|\,dx \; \le \; \int_0^\infty \left|\frac{\sin x}{x}\right|\,dx for all integers N 1 N \ge 1 . But this means that n = 1 N n 1 3 0 sin x x d x \sum_{n=1}^N n^{-1} \; \le \; 3\int_0^\infty \left|\frac{\sin x}{x}\right|\,dx for all positive integers N N , which would imply that the infinite series n = 1 n 1 \sum_{n=1}^\infty n^{-1} converged, which is does not. Thus the function sin x x \frac{\sin x}{x} is not Lebesgue integrable on R \mathbb{R} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...