"Lebesgue" Sum

Calculus Level 4

lim n i = 1 n i n ( i n i 1 n ) = a b \large\lim_{n\to\infty} \sum_{i=1}^n \frac{i}{n} \left(\sqrt{\frac{i}{n}}-\sqrt{\frac{i-1}{n}}\right)=\frac{a}{b}

If the above equation is true for coprime positive integers a a and b b , find a + b a+b .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 22, 2016

S = lim n i = 1 n i n ( i n i 1 n ) = lim n [ 1 n 1 n 1 n 0 n + 2 n 2 n 2 n 1 n + 3 n 3 n 3 n 2 n + . . . + n n n n n n n 1 n ] = lim n [ 1 1 n i = 1 n i n ] = 1 lim n 1 n i = 1 n i n Applying Riemann sums = 1 0 1 x 1 2 d x = 1 2 3 = 1 3 \begin{aligned} S & = \lim_{n \to \infty} \sum_{i=1}^n \frac in \left(\sqrt{\frac in} - \sqrt{\frac{i-1}n} \right) \\ & = \lim_{n \to \infty} \left[ \frac 1n \sqrt{\frac 1n} - \frac 1n \sqrt{\frac 0n}+ \frac 2n \sqrt{\frac 2n} - \frac 2n \sqrt{\frac 1n} + \frac 3n \sqrt{\frac 3n} - \frac 3n \sqrt{\frac 2n}+ ... + \color{#3D99F6}{\frac nn \sqrt{\frac nn}} - \frac nn \sqrt{\frac {n-1}n} \right] \\ & = \lim_{n \to \infty} \left[ \color{#3D99F6}{1} - \frac 1n \sum_{i=1}^n \sqrt{\frac in} \right] \\ & = 1 - \color{#3D99F6}{\lim_{n \to \infty} \frac 1n \sum_{i=1}^n \sqrt{\frac in} \quad \quad \small \text{Applying Riemann sums}} \\ & = 1 - \color{#3D99F6}{\int_0^1 x^\frac 12 dx} = 1 - \frac 23 = \frac 13 \end{aligned}

a + b = 1 + 3 = 4 \implies a+b = 1+3 = \boxed{4}

Rationalizing the numerator is far easier as it would directly lead to a riemann sum.

Arghyadeep Chatterjee - 9 months, 2 weeks ago

Log in to reply

Good observation.

Chew-Seong Cheong - 9 months, 2 weeks ago
Samir Khan
Jun 21, 2016

This sum is actually approximating 0 1 x 2 d x \int_0^1 x^2\, dx - it partitions 0 , 1 0,1 on the y y -axis into n n increments. At each point, it multiplies that value by an approximation for the length of the interval of x x -values that produce that y y -value. As n n goes to infinity, this approximation becomes increasingly accurate, so the value of the limit is the same as the value of the integral, which is 1 / 3 1/3 , so the answer is 4.

You should change m n \dfrac mn to a b \dfrac ab or something else because n n is used on the LHS.

Chew-Seong Cheong - 4 years, 11 months ago

To supplement: lebesgue integral basics

gopinath no - 4 years, 10 months ago

We have lim n i = 1 n i n ( i n i 1 n ) \displaystyle \lim_{n\to\infty} \sum_{i=1}^{n}\frac{i}{n}\left(\sqrt{\frac{i}{n}}-\sqrt{\frac{i-1}{n}}\right)

Multiplying and dividing by ( i n + i 1 n ) \displaystyle \left(\sqrt{\frac{i}{n}}+\sqrt{\frac{i-1}{n}}\right) we have:-

lim n i = 1 n i n 1 n ( i n + i 1 n ) \displaystyle \lim_{n\to\infty} \sum_{i=1}^{n}\frac{\frac{i}{n}\frac{1}{n}}{\left(\sqrt{\frac{i}{n}}+\sqrt{\frac{i-1}{n}}\right)} = lim n 1 n i = 1 n i n ( i n + i 1 n ) \displaystyle = \lim_{n\to\infty} \frac{1}{n}\sum_{i=1}^{n}\frac{\frac{i}{n}}{\left(\sqrt{\frac{i}{n}}+\sqrt{\frac{i-1}{n}}\right)}

Using Riemann Sums we have :-

0 1 x 2 x d x = 1 3 \displaystyle \int_{0}^{1} \frac{x}{2\sqrt{x}}\,dx = \frac{1}{3} which is our answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...