Leet Sum

Algebra Level 5

The sequence { a k } k = 1 112 \{a_k\}_{k=1}^{112} satisfies a 1 = 1 a_1 = 1 and a n = 1337 + n a n 1 a_n = \dfrac{1337 + n}{a_{n-1}} , for all positive integers n n . Let

S = a 10 a 13 + a 11 a 14 + a 12 a 15 + + a 109 a 112 . S = \left\lfloor a_{10}a_{13} + a_{11}a_{14} + a_{12}a_{15} + \cdots + a_{109}a_{112}\right\rfloor.

Find the remainder when S S is divided by 1000 1000 .

This problem is posed by Akshaj .

Details and assumptions

The function x : R Z \lfloor x \rfloor: \mathbb{R} \rightarrow \mathbb{Z} refers to the greatest integer smaller than or equal to x x . For example 2.3 = 2 \lfloor 2.3 \rfloor = 2 and 5 = 5 \lfloor -5 \rfloor = -5 .


The answer is 849.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Let's see what a n + 3 a_{n+3} simplifies to in this sequence. a n + 3 = 1337 + n + 3 a n + 2 = a_{n+3}=\frac{1337+n+3}{a_{n+2}}= 1337 + n + 3 1337 + n + 2 a n + 1 = \frac{1337+n+3}{\frac{1337+n+2}{a_{n+1}}}= ( 1340 + n ) a n + 1 1339 + n = \frac{(1340+n)\cdot{a_{n+1}}}{1339+n}= ( 1340 + n ) 1337 + n + 1 a n 1339 + n = \frac{(1340+n)\cdot{\frac{1337+n+1}{a_n}}}{1339+n}= ( 1340 + n ) ( 1338 + n ) ( 1339 + n ) a n \frac{(1340+n)\cdot(1338+n)}{(1339+n)\cdot{a_n}} .

Multiplying by a n a_n gives a n a n + 3 = ( 1340 + n ) ( 1338 + n ) ( 1339 + n ) = a_n\cdot{a_{n+3}}=\frac{(1340+n)\cdot(1338+n)}{(1339+n)}= ( 1339 + n + 1 ) ( 1339 + n 1 ) 1339 + n = \frac{(1339+n+1)\cdot(1339+n-1)}{1339+n}= ( 1339 + n ) 2 1 1339 + n = \frac{(1339+n)^2-1}{1339+n}= 1339 + n 1 1339 + n 1339+n-\frac{1}{1339+n} .

Now all we want is n = 10 109 ( 1339 + n 1 1339 + n ) = \displaystyle\sum_{n=10}^{109}(1339+n-\frac{1}{1339+n})= n = 10 109 ( 1339 + n ) n = 10 109 1 1339 + n \displaystyle\sum_{n=10}^{109}(1339+n)-\sum_{n=10}^{109}\frac{1}{1339+n} . The first sum is clearly 1339 100 + 100 119 2 = 1339\cdot100+\frac{100\cdot119}{2}= 133900 + 5950 = 133900+5950= 139850 139850 (only simple arithmetic sequence summation tricks were used here). The second sum is almost irrelevant, because n = 10 109 1 1339 + n < \displaystyle\sum_{n=10}^{109}\frac{1}{1339+n}< n = 10 109 1 1339 = \displaystyle\sum_{n=10}^{109}\frac{1}{1339}= 100 1 1339 = 100\cdot\frac{1}{1339}= 100 1339 < 1 \frac{100}{1339}<1 . Therefore, we're subtracting a number less that 1 1 from 139850 139850 , which tells us that S = x S=\lfloor{x}\rfloor where x ( 139849 , 139850 ) x\in(139849,139850) , and so S = 139849 S=139849 . When S S is divided by 1000 1000 , the remainder is 849 849 , which is our answer.

Common mistakes:

  1. Not justifying the formula for a n a n + 3 a_n a_{n+3} , and merely claiming that it is slightly less than 1339 + n 1339+n .
  2. You may not 'split' out the floor function. a + b a + b \lfloor a + b \rfloor \neq \lfloor a \rfloor + \lfloor b \rfloor in general.

Calvin Lin Staff - 7 years ago
Adi Herwana
May 20, 2014

Let P = a 10 a 13 + a 11 a 14 + a 12 a 15 + + a 109 a 112 = m = 10 109 a m a m + 3 P = a_{10} a_{13} + a_{11} a_{14} + a_{12} a_{15} + \ldots + a_{109} a_{112} = \sum_{m=10}^{109} a_m a_{m+3} .

The problem states that : a n = 1337 + n a n 1 a_n = \frac {1337+n}{a_{n-1}} , which is equivalent to: a n 1 a n = 1337 + n a_{n-1}a_n = 1337+n

Plugging in n = m+1, n = m+2, and n = m+3 yields: a m a m + 1 = 1337 + m + 1 = 1338 + m a_m a_{m+1} = 1337 + m + 1 = 1338 + m a m + 1 a m + 2 = 1337 + m + 2 = 1339 + m a_{m+1} a_{m+2} = 1337 + m + 2 = 1339 + m a m + 2 a m + 3 = 1337 + m + 3 = 1340 + m a_{m+2} a_{m+3} = 1337 + m + 3 = 1340 + m

Thus, ( a m a m + 1 ) ( a m + 2 a m + 3 ) a m + 1 a m + 2 = a m a m + 3 = ( 1338 + m ) ( 1340 + m ) 1339 + m \frac {(a_m a_{m+1})(a_{m+2}a_{m+3})} {a_{m+1} a_{m+2}} = a_m a_{m+3} = \frac{(1338+m)(1340+m)}{1339+m}

a m a m + 3 = ( 1339 + m ) 2 1 1339 + m a_m a_{m+3} = \frac{(1339+m)^2 - 1}{1339+m}

a m a m + 3 = 1339 + m 1 1339 + m a_m a_{m+3} = 1339 + m - \frac{1}{1339+m}

Thus, P = m = 10 109 ( 1339 + m ) m = 10 109 1 1339 + m P = \sum_{m=10}^{109} (1339 + m) - \sum_{m=10}^{109} \frac{1}{1339 + m} = 1349 + 1350 + + 1448 ( 1 1349 + 1 1350 + + 1 1448 ) = 1349 + 1350 + \ldots + 1448 - (\frac{1}{1349} + \frac{1}{1350} + \ldots + \frac{1}{1448}) = 50 × 2797 ( 1 1349 + 1 1350 + + 1 1448 ) = 50 \times 2797 - (\frac{1}{1349} + \frac{1}{1350} + \ldots + \frac{1}{1448}) = 139850 ( 1 1349 + 1 1350 + + 1 1448 ) = 139850 - (\frac{1}{1349} + \frac{1}{1350} + \ldots + \frac{1}{1448})

Note that

0 < 1 1349 < 1 100 0 < \frac{1}{1349} < \frac{1}{100}

0 < 1 1350 < 1 100 0 < \frac{1}{1350} < \frac{1}{100}

\ldots

0 < 1 1448 < 1 100 0 < \frac{1}{1448} < \frac{1}{100}

Adding the above inequalities gives us: 0 < 1 1349 + 1 1350 + + 1 1448 < 1 0 < \frac{1}{1349} + \frac{1}{1350} + \ldots + \frac{1}{1448} < 1

Consequently, 139849 < 139850 ( 1 1349 + 1 1350 + + 1 1448 ) < 139850 139849 < 139850 - (\frac{1}{1349} + \frac{1}{1350} + \ldots + \frac{1}{1448}) < 139850 139849 < P < 139850 139849 < P < 139850 . S = a 10 a 13 + a 11 a 14 + a 12 a 15 + + a 109 a 112 = P S = \lfloor a_{10} a_{13} + a_{11} a_{14} + a_{12} a_{15} + \ldots + a_{109} a_{112} \rfloor = \lfloor P \rfloor S = 139849 849 ( m o d 1000 ) S = 139849 \equiv \boxed{849} \pmod{1000}

Anh Tuong Nguyen
May 20, 2014

a n = 1337 + n a n 1 a_n = \frac{1337+n}{a_{n-1}} a n 1 a n = 1337 + n \rightarrow a_{n-1}a_n=1337+n

a n a n + 3 = a n a n + 1 a n + 2 a n + 3 a n + 1 a n + 2 a_na_{n+3} = \frac{a_na_{n+1}a_{n+2}a_{n+3}}{a_{n+1}a_{n+2}} = ( 1337 + ( n + 1 ) ) ( 1337 + ( n + 3 ) ) 1337 + ( n + 2 ) =\frac{(1337+(n+1))(1337+(n+3))}{1337+(n+2)} = ( ( 1339 + n ) 1 ) ( ( 1339 + n ) + 1 ) 1339 + n =\frac{((1339+n)-1)((1339+n)+1)}{1339+n} = ( 1339 + n ) 2 1 1339 + n =\frac{(1339+n)^2-1}{1339+n} = 1339 + n 1 1339 + n =1339+n-\frac{1}{1339+n}

Let A = a 10 a 13 + a 11 a 14 + + a 109 a 102 a_{10}a_{13}+a_{11}a_{14}+\ldots+a_{109}a_{102}

Then A = n = 10 109 a n a n + 3 \displaystyle \sum_{n=10}^{109} a_na_{n+3} = n = 10 109 ( 1339 + n 1 1339 + n ) =\displaystyle \sum_{n=10}^{109} (1339+n-\frac{1}{1339+n}) = 100 ( 1339 ) + 100 ( 109 + 10 ) 2 n = 10 109 1 1339 + n =100(1339)+\frac{100(109+10)}{2} - \displaystyle \sum_{n=10}^{109} \frac{1}{1339+n} = 139850 n = 10 109 1 1339 + n =139850 - \displaystyle \sum_{n=10}^{109} \frac{1}{1339+n}

Clearly, A < 139850 and A > 139850 100 1339 + 10 > 139849 139850 - \frac{100}{1339+10} > 139849

Hence S = A = 139849 \lfloor A \rfloor = 139849 and the remainder when S is divided by 1000 is 849.

Michael May
May 20, 2014

Given a n a_n we can find the next 3 numbers in the sequence as follows: a n + 1 = 1337 + n + 1 a n = 1338 + n a n a_{n+1}=\frac {1337+n+1}{a_{n}}=\frac {1338+n}{a_n} a n + 2 = 1337 + n + 2 a n + 1 = 1339 + n 1338 + n a n = ( 1339 + n ) × a n 1338 + n a_{n+2}=\frac {1337+n+2}{a_{n+1}}=\frac {1339+n}{ \frac {1338+n}{a_n}}=\frac {(1339+n) \times a_n}{1338+n} a n + 3 = 1337 + n + 3 a n + 2 = 1340 + n ( 1339 + n ) × a n 1338 + n = ( 1340 + n ) × ( 1338 + n ) ( 1339 + n ) × a n a_{n+3}=\frac {1337+n+3}{a_{n+2}}=\frac {1340+n}{ \frac {(1339+n) \times a_n}{1338+n}}=\frac {(1340+n) \times (1338+n)}{(1339+n) \times a_n}

To find the answer we have to calculate: a n × a n + 3 = ( 1339 + n + 1 ) × ( 1339 + n 1 ) 1339 + n = ( 1339 + n ) 2 1339 + n 1 1339 + n a_n \times a_{n+3}=\frac {(1339+n+1) \times (1339+n-1)}{1339+n}=\frac {(1339+n)^2}{1339+n}-\frac {1}{1339+n} a n × a n + 3 = 1339 + n ε n a_n \times a_{n+3}=1339+n- \varepsilon_n with 0 ε n 1 1000 0 \leq \varepsilon_n \leq \frac {1}{1000} for all positive integer n.

To get S we need to calculate i = 10 109 a n × a n + 3 = i = 10 109 1339 + n ε n \displaystyle \sum_{i=10}^{109} a_n \times a_{n+3}=\displaystyle \sum_{i=10}^{109} 1339+n-\varepsilon_n Which is equivalent to 133900 + i = 10 109 n i = 10 109 ε n = 139850 γ 133900+\displaystyle \sum_{i=10}^{109} n-\displaystyle \sum_{i=10}^{109} \varepsilon_n=139850-\gamma ε n 1 1000 \varepsilon_n \leq \frac {1}{1000} so γ 100 / 1000 1 \gamma \leq 100/1000 \leq 1

With this we see that S = 139850 γ = 139849 S=\left\lfloor 139850 -\gamma \right\rfloor=139849

The remainder of S divided by 1000 are the last three digits being 849.

José Neto
May 20, 2014

First we have that a(n) a(n-1) = 1337 + n a(n-1) a(n-2) = 1336 + n a(n-2)*a(n-3) = 1335 + n

Multiplying the first equation and the third we get to

a(n) a(n-1) a(n-2) a(n-3) = (1337 + n) (1335 +n)

Subistituing the second equation we get that

a(n) a(n-3) = (1337+n) (1335+n)/(1336+n)

But

1335*1337 = 1336^2 - 1

So

a(n)*a(n-3) = 1336+n - 1/(1336+n)

applying that to "n+3"

a(n)*a(n+3) = 1339+n - 1/(1339+n)

Now we can calculate the value of S

1339 + 10 + 1339 + 11 + ... + 1339 + 109 - 1/1349 - 1/1350 - ... - 1/1448

Now note that there are 99 terms ranging from -1/1339 to -1/1448, we can assure that this sum will get to a number between -1 and 0

Now for the other terms

1339 + 10 + 1339 + 11 + ... + 1339 + 109 = 100 1339 + 110 109/2 - 10*9/2 = 133900 + 5950 = 139850

So we have that

S = floor(139850 + x) where x is a number between -1 and 0

S = 139849 = 1000*139 + 849

849 is the remaining

Karan Theron
May 20, 2014

a(1) = 1 a(2) = 1339 a(3) = 1340/1339 a(4) = 1341 1339/1340 a(5) = 1342 1340/(1341(1339) .. From the above sequence, we can find that a(n)*a(n + 3) = (1340 + n)(1338 + n)/(1339 + n) = {(1339 + n)^2 - 1}/(1339 + n) = (1339 + n) - 1/(1339 + n)

So, Summation will be given by:- [1349 + 1350 + ... + 1448 - (1/1349 + 1/1350 + .. + 1/1448)]

Since, (1/1349 + 1/1350 + .. + 1/1448) < 1, we can say that Summation will be given by:- 1349 + 1350 + ... + 1448 - 1 = 2797*50 - 1

So, remainder by 1000 will be 849

D G
May 20, 2014

Writing out the first few terms of the sequence we get:

  • a ( 1 ) = 1 a(1) = 1
  • a ( 2 ) = 1339 a(2) = 1339
  • a ( 3 ) = 1340 / 1339 a(3) = 1340/1339
  • a ( 4 ) = ( 1339 1341 ) / 1340 a(4) = (1339\cdot1341) / 1340
  • a ( 5 ) = ( 1340 1342 ) / ( 1339 1341 ) a(5) = (1340\cdot1342) / (1339\cdot1341)
  • a ( 6 ) = ( 1339 1341 1343 ) / ( 1340 1342 ) a(6) = (1339\cdot1341\cdot1343) / (1340\cdot1342)
  • a ( 7 ) = ( 1340 1342 1344 ) / ( 1339 1341 1343 ) a(7) = (1340\cdot1342\cdot1344) / (1339\cdot1341\cdot1343) ...
  • a ( 10 ) = ( 1339 1341 1343 1345 1347 ) / ( 1340 1342 1344 1346 ) a(10) = (1339\cdot1341\cdot1343\cdot1345\cdot1347) / (1340\cdot1342\cdot1344\cdot1346) ...
  • a ( 13 ) = ( 1340 1342 1344 1346 1348 1350 ) / ( 1339 1341 1343 1345 1347 1349 ) a(13) = (1340\cdot1342\cdot1344\cdot1346\cdot1348\cdot1350) / (1339\cdot1341\cdot1343\cdot1345\cdot1347\cdot1349)

Therefore

  • a ( 10 ) a ( 13 ) = ( 1348 1350 ) / 1349 a(10) \cdot a(13) = (1348\cdot1350) / 1349
  • a ( 11 ) a ( 14 ) = ( 1349 1351 ) / 1350 a(11) \cdot a(14) = (1349\cdot1351) / 1350
  • f ( k ) = a ( k ) a ( k + 3 ) = ( 1338 + k ) ( 1340 + k ) / ( 1339 + k ) f(k) = a(k) \cdot a(k + 3) = (1338 + k)\cdot(1340 + k) / (1339 + k)

We now need to find

k = 10 109 f ( k ) = k = 0 99 f ( k 10 ) = k = 0 99 ( 1348 + k ) ( 1350 + k ) 1349 + k \displaystyle \sum_{k=10}^{109} f(k) = \sum_{k=0}^{99} f(k - 10) = \sum_{k=0}^{99} \frac{(1348 + k)\cdot(1350 + k)}{1349 + k}

Let's generalize this slightly to

k = 0 q ( a + k ) ( a + 2 + k ) a + 1 + k \sum_{k=0}^{q} \frac{(a+k)\cdot(a+2+k)}{a+1+k}

( a + n ) ( a + 2 + n ) ( a + 1 + n ) = a 2 + 2 a ( n + 1 ) + 2 n + n 2 a + 1 + n \frac{(a+n)\cdot(a+2+n)}{(a+1+n)} = \frac{a^2 + 2a\cdot(n+1) + 2n + n^2}{a+1+n}

= a 2 + a ( n + 1 ) + a ( n + 1 ) + 2 n + n 2 + 1 1 a + 1 + n = \frac{a^2 + a\cdot(n+1) + a\cdot(n+1) + 2n + n^2 + 1 - 1}{a+1+n}

= a ( a + 1 + n ) + ( n + 1 ) ( a + 1 + n ) 1 a + 1 + n = \frac{a\cdot(a+1+n) + (n+1)\cdot(a+1+n) - 1}{a+1+n}

= a + ( n + 1 ) 1 a + 1 + n = a + (n + 1) - \frac{1}{a+1+n}

These terms can be summed individually to give a final sum of

( q + 1 ) a + ( q + 1 ) ( q + 2 ) 2 H ( a + q ) + H ( a ) (q+1)\cdot a + \frac{(q+1)\cdot(q+2)}{2} - H(a + q) + H(a)

where H ( n ) H(n) is the nth harmonic number.

Substituting q = 99 and a = 1348:

( 99 + 1 ) 1348 + ( 99 + 1 ) ( 99 + 2 ) 2 H ( 1348 + 99 ) + H ( 1348 ) (99+1)\cdot 1348 + \frac{(99+1)\cdot(99+2)}{2} - H(1348 + 99) + H(1348)

= 134800 + 5050 H ( 1447 ) + H ( 1348 ) = 134800 + 5050 - H(1447) + H(1348)

H ( 1447 ) 7.85480889423 H(1447) \approx 7.85480889423

H ( 1348 ) 7.78396383039 H(1348) \approx 7.78396383039

134800 + 5050 H ( 1447 ) + H ( 1348 ) = 139849.929155... 134800 + 5050 - H(1447) + H(1348) = 139849.929155...

Taking the integer part mod 1000 gives the final answer of 849.

Need to justify a n a {n+3}

Calvin Lin Staff - 7 years ago
Superman Son
May 20, 2014

by observing the pattern we see that

a(n) a(n + 3) = (1340 + n)(1338 + n)/(1339 + n) where n is from 10 to 109 as (109 is the last term) now we see that the fraction (1338 + n)/(1339 + n) is nearly equal to 1 but less than 1. hence for any number n ⌊n *(1338 + n)/(1339 + n)⌋=n-1 as (1338 + n)/(1339 + n)<1 hence n (1338 + n)/(1339 + n)<n

hence , it is equal to (1340 + n) - 1 = 1339 + n

now we take the ∑ of all the possible values of a

i.e ( 10 + 11 .......... + 109) = 5950

hence the sum in total will be ( required summation ) = (1338)*(100) + 5950 - 101 = 139849 ( -100 as ⌊n *(1338 + n)/(1339 + n)⌋=n-1) and -1 as the value is a fraction in the form 139849.xyz and ⌊139849.xyz⌋=139849 so the last three digits are 849 which is the required solution.

Can't split up the floor function

Calvin Lin Staff - 7 years ago
Matthew Nelson
May 20, 2014

After looking at the first few terms in the sequence, I noticed that they were jumping back and forth between a number close to one, and a number close to 1339, and that number was slowly getting bigger. Ten terms in it was just under 1343, and multiplying that by the thirteenth term gave something just under 1349. The eleventh and fourteenth gave something just under 1350. So I figured I could just consider the new series:

S=1349+1350+....+1448

Which gave S = 139850, but because of the floor function, I just subtracted one. Which gave 139849, and of course dividing by 1000 just means the last three digits would be the remainder. Thus, 849.

No justification whatsoever

Calvin Lin Staff - 7 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...