Trigonometric powers?

Geometry Level 1

Evaluate ( 1 2 sin 2 4 ) sin 2 4 × ( 1 2 sin 6 6 ) sin 6 6 × ( 1 2 cos 3 6 ) cos 3 6 × ( 1 2 cos 5 4 ) cos 5 4 . \large { \begin{aligned} & \left(12 ^{\sin 24 ^\circ}\right)^{\sin 24 ^\circ} \times \left(12 ^{\sin 66 ^\circ}\right)^{\sin 66 ^\circ} \\ & \times \left(12 ^{\cos 36 ^\circ}\right)^{\cos 36 ^\circ} \times \left(12 ^{\cos 54 ^\circ}\right)^{\cos 54 ^\circ}. \end{aligned}}

144 216 72 288

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Shabarish Ch
Mar 7, 2014

( 1 2 sin 2 4 ) sin 2 4 × ( 1 2 sin 6 6 ) sin 6 6 × ( 1 2 cos 3 6 ) cos 3 6 × ( 1 2 cos 5 4 ) cos 5 4 (12^{ \sin 24^{ \circ } } )^{ \sin 24^{ \circ }} \times (12^{ \sin 66^{ \circ } } )^{ \sin 66^{ \circ }} \times (12^{ \cos 36^{ \circ } } )^{ \cos 36^{ \circ }} \times (12^{ \cos 54^{ \circ } } )^{ \cos 54^{ \circ }}

First we remove the brackets to get,

1 2 sin 2 2 4 × 1 2 sin 2 6 6 × 1 2 cos 2 3 6 × 1 2 cos 2 5 4 12^{ \sin^2 24^{\circ} } \times 12^{ \sin^2 66^{\circ} } \times 12^{ \cos^2 36^{\circ} } \times 12^{ \cos^2 54^{\circ} }

We know that sin ( 90 θ ) = cos θ \sin (90 - \theta) = \cos \theta and cos ( 90 θ ) = sin θ \cos (90 - \theta) = \sin \theta , when angles are expressed in degrees.

So, sin 6 6 = cos ( 9 0 6 6 ) = cos 2 4 \sin 66^{\circ} = \cos ( 90^{\circ} - 66^{\circ}) = \cos 24^{\circ} and cos 5 4 = sin ( 9 0 5 4 ) = sin 3 6 \cos 54^{\circ} = \sin ( 90^{\circ} - 54^{\circ}) = \sin 36^{\circ}

Substituting these values, we get,

1 2 sin 2 2 4 × 1 2 cos 2 2 4 × 1 2 cos 2 3 6 × 1 2 sin 2 3 6 12^{ \sin^2 24^{\circ} } \times 12^{ \cos^2 24^{\circ} } \times 12^{ \cos^2 36^{\circ} } \times 12^{ \sin^2 36^{\circ} }

or,

1 2 sin 2 2 4 + cos 2 2 4 × 1 2 sin 2 3 6 + cos 2 3 6 12^{ \sin^2 24^{\circ} + \cos^2 24^{\circ} } \times 12^{ \sin^2 36^{\circ} + \cos^2 36^{\circ} }

We know that sin 2 θ + cos 2 θ = 1 \sin^{2} \theta + \cos^{2} \theta = 1

Substituting this in the above expression, we get

1 2 1 × 1 2 1 = 144 12^1 \times 12^1 = \boxed{144}

Prasun Biswas
Mar 7, 2014

We should first know the formula that sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta = 1 and the laws of indices like a m × a n = a m + n a^m\times a^n = a^{m+n} and ( a m ) n = a m n (a^m)^n = a^{mn} . Also, we must know that sin θ = cos ( 9 0 θ ) \sin \theta = \cos (90^{\circ}- \theta) from which on squaring both sides of it, we get sin 2 θ = cos 2 ( 9 0 θ ) \sin^2 \theta = \cos^2 (90^{\circ}- \theta) Now, lets get back to the given problem----

( 1 2 sin 2 4 ) sin 2 4 × ( 1 2 sin 6 6 ) sin 6 6 + ( 1 2 cos 3 6 ) cos 3 6 + ( 1 2 cos 5 4 ) cos 5 4 \large (12^{\sin 24^{\circ}})^{\sin 24^{\circ}}\times (12^{\sin 66^{\circ}})^{\sin 66^{\circ}}+(12^{\cos 36^{\circ}})^{\cos 36^{\circ}}+(12^{\cos 54^{\circ}})^{\cos 54^{\circ}}

= 1 2 sin 2 4 × sin 2 4 × 1 2 sin 6 6 × sin 6 6 × 1 2 cos 3 6 × cos 3 6 × 1 2 cos 5 4 × cos 5 4 \large =12^{\sin 24^{\circ}\times \sin 24^{\circ}}\times 12^{\sin 66^{\circ}\times \sin 66^{\circ}}\times 12^{\cos 36^{\circ}\times \cos 36^{\circ}}\times 12^{\cos 54^{\circ}\times \cos 54^{\circ}}

= 1 2 sin 2 2 4 × 1 2 sin 2 6 6 × 1 2 cos 2 3 6 × 1 2 cos 2 5 4 \large =12^{\sin^2 24^{\circ}}\times 12^{\sin^2 66^{\circ}}\times 12^{\cos^2 36^{\circ}}\times 12^{\cos^2 54^{\circ}}

= 1 2 ( sin 2 2 4 + sin 2 6 6 + cos 2 3 6 + cos 2 5 4 ) \large =12^{(\sin^2 24^{\circ}+\sin^2 66^{\circ}+\cos^2 36^{\circ}+\cos^2 54^{\circ}})

= 1 2 ( sin 2 ( 90 66 ) + sin 2 6 6 + sin 2 ( 90 54 ) + cos 2 5 4 ) \large =12^{(\sin^2 (90-66)^{\circ}+\sin^2 66^{\circ}+\sin^2 (90-54)^{\circ}+\cos^2 54^{\circ}})

= 1 2 ( cos 2 6 6 + sin 2 6 6 + sin 2 5 4 + cos 2 5 4 ) \large =12^{(\cos^2 66^{\circ}+\sin^2 66^{\circ}+\sin^2 54^{\circ}+\cos^2 54^{\circ}})

= 1 2 1 + 1 = 1 2 2 = 144 \large =12^{1+1}=12^2=\boxed{144}

Alec Camhi
May 23, 2015

Ritesh Surve
Apr 17, 2014

12*12=144

Very good question...

Yes indeed, I agree

Mahdi Raza - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...